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Abstract 
Summary 
A method of compensation for the presence of discrete shallow velocity anomalies (SVAs) has been 
developed. When the first breaks approach fails for any reason (first breaks are hard to pick, there is 
a shallow low velocity layer, permafrost etc) the only seismic information available is deep 
reflections. Shallow velocity anomalies cause large lateral variations in stacking velocities increasing 
with depth. Dix’s formula gives us interval velocities in 1-D media. In many cases, the 1D 
assumption does not work, especially when we have local velocity anomalies in the overburden. Not 
only do they reduce post-stack image quality, but also create large differences in stacking velocity 
behaviour for deep seismic reflectors with small dips. A non-fist-breaks technology provides us tools 
to determine shallow velocity structures and remove their influence on stacking velocities and 
imaging. This technology includes four main steps: (i) High-density automatic non-hyperbolic NMO 
picking, (ii) Analytical NMO inversion to estimate shallow velocity structure, (iii) Non-linear horizon-
based traveltime tomography to improve depth velocity model and (iv) Time-dependent velocity-
replacement corrections for prestack data. Model and real data examples show the practical 
feasibility and robustness of the proposed approach if there are deep consistent reflections. 

Possibility of simple shallow velocity description 
Conventional approach to deal with SVAs utilizes first breaks to determine shallow velocity 
structures (Hampson and Russell, 1984, Yilmaz, 1987, Taner et al., 1998, Cox, 1999). The 
presented approach deals only with deep reflections, which are supposed to be quite consistent. It 
is based on some theoretical results relating to NMO Dix’s type inversion for a medium with 
curvilinear boundaries and laterally changing velocities. To describe SVAs, we use one layer with 
a laterally changing interval velocity. Because we don’t use first breaks, a question arises: can we 
use this simple description of shallow velocity structures while they may be much more 
complicated, including several inhomogeneous curvilinear layers? It can be proved theoretically 
that for a subsurface with modest structures we can use a simple one-layer shallow velocity model 
to describe it such that vertical times in this layer will be very close to those of the initial 
complicated model. 

The proof is based on an approximate formula derived by Blias (2005a, 2005b) for the NMO 
velocity: 
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Here Vm is an interval velocity in the mth layer, sm=1/vm is the slowness in the same layer, hm is the 
thickness, VAVEm is an average velocity between the anomaly depth Fm and the reflector depth H; 
F(x) is an average of anomaly depths and VAVE is an average velocity between F and H. Let’s 
consider the shallow portion of the subsurface with a horizontal bottom boundary. We assume that 
an adequate velocity model for this layer should be described with several curvilinear 
inhomogeneous layers. Let n be the number of the layers in this shallow part, Fk(x) be the 
boundary and vk(x) be the interval velocity in this layer. Then the vertical time in this shallow 
structure is given by the formula: 
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We substitute all these n layers with one with the same bottom boundary H and with the slowness 
s(x). For static correction purpose we want the zero-offset times to be the same. Since the zero-
offset time in the substitute layer is Hs(x) then from (2) it follows that slowness s(x) in this new 
layer satisfies the equation: 
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After differentiating this equation two times, we come to the connection between the second-order 
derivatives of the two forms: 
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For the model with a horizontal shallow layer with slowness s(x) formula (1) becomes: 
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Comparing formulas (1) and (4) and taking into account formula (3), we see that both SVA 
descriptions give close NMO velocities. This can be confirmed by modeling. The fact that, for 
deep reflections, we can replace complex shallow velocity structure with one shallow layer with 
laterally changing interval velocity plays an important role in the non-first-break approach for 
determination of SVAs and removing their influence. 
 
Main steps of non-first-breaks technology. 
Let’s consider the main steps of the technology. 
1. High-density NMO picking 
Because SVAs cause strong lateral fluctuations of deep stacking velocities (Blias 1981, 1988, 
2005a, 2005b), we need high-density velocity picking. Here the final goal is to pick NMO functions 
regardless of their shape. NMO information will be used to build depth velocity model including 
SVAs. We solve this problem with two steps. First we run constrained hyperbolic velocity analysis 
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based on coherence semblances. The distinguishing feature of this step is that one has to 
manually pick velocities at one CDP gather. After that the program will automatically (using some 
constraints) find stacking velocities for each CDP point within a moving time window where 
possible. Picked velocities are interpolated to each time sample and smoothed.  

After that, picked hyperbolic NMO functions are applied to CDP gathers and NMO gathers are 
stacked. Then, one picks horizons and applies horizon-based residual non-hyperbolic moveout. 
Finally, we have NMO curves for several (picked) horizons that will be used in non-linear 
traveltime inversion. 

2. Analytical NMO inversion to create a zero approximation for depth velocity model 
For this we use stacking velocities after the first velocity hyperbolic analysis. First we determine a 
shallow velocity model using the method derived by Blias (SEG 2005c).  

After that we use a generalization of the Dix formula a layered medium with lateral varying 
velocities (Blias, 2003). It allows us to determine the initial depth velocity model with curvilinear 
boundaries and laterally inhomogeneous layers. 

4. Travel-time inversion and depth velocity model improvement 
We use non-hyperbolic travel-times to build a depth velocity model, including shallow velocity 
structures. For this we use an optimization approach (Blias and Khatchatrian, 2003). We describe 
interval velocities and boundaries as the sum of some reference (known) functions and linear 
combinations of basis functions with the coefficients to be found from minimizing an objective 
function. To find a minimum of the non-linear function F, we use the Newton method. 

5. Velocity anomaly replacement (VAR) 
We use the depth velocity model to remove the influence of the SVA. For a given shallow velocity 
model it can be done by forward and reverse pre-stack wavefield extrapolation (Wapenaar and 
Berkhout, 1985). We use time-variable time shifts to remove the SVA effects, which is less 
expensive. For this we run raytracing for the obtained depth velocity model and calculate pre-
stack reflection time arrivals for all boundaries. Then we replace the shallow inhomogeneous layer 
with a homogeneous one and calculate time arrivals for this model. The difference between the 
first and the second set of times is applied to the CDP gathers. This procedure moves events on 
pre-stack data to the position where they would be if the shallow layer were homogeneous (Blias 
et al., 1985).  

Model data test 
Let’s illustrate the above technique on model data. We test this approach on model data with 
modest deep structures. We will see that the suggested approach is stable and allows us to 
restore the depth velocity model when we have complicated SVA, caused by several curvilinear 
boundaries and laterally inhomogeneous layers. Fig. 1a shows a depth velocity model boundaries 
and interval velocities are displayed on fig. 1b. Red lines display interval velocities in the three 
shallow layers. 

From these figures we see that the shallow part of the subsurface is complicated. The bottom of 
this shallow part is at 300m. Above this boundary there are three curvilinear layers with laterally 
changing interval velocities. Average velocity in this layer is 1600 m/s. For this model synthetic 
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CDP gathers have been calculated with maximum offset/ reflector depth = 1.5. Shot interval = 
receiver interval = 32 m. All five steps of the described technology have been run on this synthetic 
data. Fig. 2a shows a velocity grid after automatic continuous velocity analysis. We see large 
lateral stacking velocity fluctuations increasing with depth. 

 
 
 
 
 
 
 
 
 
 
 

 
         Figure. 1a. Boundaries         Figure. 1b. Interval velocities. 
 
An initial shallow velocity model was built, using method developed by Blias (2005b). We put h1 = 
240m and average velocity in the first layer 1200m/s while h1 is 300m and average velocity in this 
layer is 1600 m/s. Here h1 is a thickness of the first layer. This means that we used wrong a priori 
parameters for the first layer to prove that it should not have much influence on the final result of 
velocity anomaly replacement. 
 
 
 
 
 
 
 
 
 
 
 
    Figure. 2.  Velocity grid before (a) and after (b) VAR  
 
Fig. 3 shows initial velocity in the first layer (red) and after optimization (brown). Except modest 
difference in shape, there is a constant shift because during traveltime inversion optimization we 
also changed the thickness of the first layer. 
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 Figure 3. Velocity in the first layer Figure 4. Vertical times in the 
                 after analytical inversion (red)                 first layer for initial model (blue) 
                 and optimization (brown).                 and recovered model (brown). 

      
 
Because we took a wrong value for the bottom of the first layer with velocity anomalies (240 m 
instead of 300 m), the recovered velocity in this layer differs from the original average velocity. As 
was mentioned above, the vertical time should be found with reasonable accuracy. Fig. 27 shows 
vertical times for the original model (blue) and for the model after traveltime inversion (brown). 

After we determined the interval velocity in the first layer, we use a generalization of Dix’s 
formulas (Blias, 2003) to find interval velocities for the other layers. The results of these 
calculations give us an initial depth velocity model, which is needed for optimization-based 
traveltime inversion. To improve this model, traveltime optimization inversion was applied using 
non-hyperbolic traveltimes extracted after residual velocity analysis (Blias and Khatchatrian, 
2003).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Boundaries of original model (brown) and after time-inversion (blue) 
 
Fig. 5 shows boundaries of the initial model (brown) and after optimization traveltime inversion 
(blue). We see acceptable similarity between them. All structures were recovered correctly despite 
a wrong thickness of the first layer. 
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The model after traveltime inversion was used to calculate VAR corrections. These corrections 
were applied to the CDP gathers. They transform moveout curves to hyperbolic ones. Strictly 
speaking, new NMO curves are better approximated with hyperbolas than the original ones. VAR 
significantly removed non-hyperbolic distortions caused by shallow anomalies. 
 

 
 
 
 
 
 
 
 
 
 
 
      

                      Figure 6. Poststack sections before (a) and after (b) VAR. 
 
VAR also significantly improved the velocity grid (fig. 2 b) and structural imaging. Fig. 6 shows 
poststack sections before (a) and after (b) VAR. We can see that after the VAR poststack data 
looks much more similar to the depth velocity model. From this we come to the conclusion that, for 
the shallow part of the section, utilization of a laterally inhomogeneous layer instead of a 
complicated velocity model is acceptable. It allows us to restore SVA using deep reflections and to 
eliminate their influence on prestack gathers with sufficient accuracy. 

Real data example 
Let’s demonstrate this approach on a real data example. This data has been obtained in an area 
where first breaks were very hard to pick. High-density non-hyperbolic constrained velocity 
analysis has been performed on CDP gathers.  

Fig. 7a shows stacking velocities after automatic continuous constrained velocity analysis. We can 
see two anomalies in the interval 12 – 17 km, which caused large lateral variations of stacking 
velocities from deep boundaries.  
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   Figure 7. Stacking velocities before VAR (a) and after (b). 
 
The above inversion approach has been applied to stacking velocities. The horizon-based 
traveltime inversion was run using time arrivals as input data.  

Fig. 8 shows depth velocity model obtained after traveltime inversion with two shallow velocity 
anomalies (red arrows in fig. 8b). 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8a. Boundaries       Figure 8b. Interval velocities 

 
 

Figure 9. Poststack data: a – before VAR, b – after VAR. 
 
Comparing fig. 8 a and b we see that after VAR stacking velocity show much less lateral 
variations, Fig. 4b. Post-stack sections are shown in fig. 9. We see that VAR improved velocity 
grid and post-stack images. 
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Conclusions 
To eliminate SVA effects, a non-first-break method has been presented. It uses a laterally 
inhomogeneous layer to describe the shallow part of the subsurface. To find the shallow velocity 
model, we use deep reflections picked after automatic high-density constrained velocity analysis. 
Stacking velocities are converted to a zero-approximation depth velocity model, which is improved 
by travel-time optimization inversion. Velocity replacement time-variant correction are calculated 
and applied to prestack gathers. This allows us to significantly remove the influence of SVAs on 
prestack data and to obtain more reliable images.  
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