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Abstract 
Summary 
White reflectivity is not a fundamental assumption in the convolutional models. However the 
deconvolution algorithms should be modified slightly to honour color in the reflectivity series. This 
color correction is just possible when enough well-log information is available to build a 
mathematical model for the regional reflectivity. A method for correcting reflectivity color effects in 
frequency domain Wiener deconvolution is extended to Gabor deconvolution. The potential 
advantage of Gabor deconvolution in addressing the color reflectivity issue is the use of a time-
frequency mathematical model for the reflectivity, which result in a more accurate compensation 
especially in areas with strong variations of the local reflectivity frequency spectrum with depth. 

Introduction 
A generally accepted model for the seismic trace is to consider it as a convolution of the earth 
seismic response with a source wavelet. In turn, this wavelet can be regarded as the convolution of 
several effects: source signature, recording filter, earth filter, surface reflections and geophone 
response (e.g. Robinson, 1985). Deconvolution is the process of removing the wavelet from the 
seismic trace to estimate the earth seismic response, which is composed of primaries and multiple 
reflections. The application of deconvolution to seismic processing relies on the fulfillment of a set of 
assumptions on which the convolutional model is based: stationarity, minimum phase wavelet, white 
reflectivity and white additive noise. 

In presence of inelastic attenuation, the stationary assumption is not valid. A nonstationary 
convolutional model (e. g. Margrave and Lamoureux, 2002) is formulated using the constant-Q 
theory and the mathematical operation called nonstationary deconvolution (Margrave, 1998). The 
Gabor deconvolution method (Margrave et al 2003, Margrave et al. 2004) is a nonstationary 
extension of the Wiener deconvolution method, based on the nonstationary convolutional model. 

Minimum phase, the second assumption of the convolutional model, continues occupying an 
essential place in Gabor deconvolution. Besides the minimum-phase character associated with the 
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source wavelet generated by an explosive source, the constant-Q theory gives strong arguments to 
consider that the attenuation earth filter is endowed with a minimum-phase character as well.  

The assumption that the reflectivity is a white and stationary time series is not fundamental in the 
deconvolution methods, but it has to be addressed in order to avoid inaccuracies both in the 
amplitude and in the phase spectrum of the deconvolved trace. It has been largely reported that 
earth reflectivity does not have a white spectrum but instead shows considerable spectral color 
evidenced by a pronounced rollof in power at the low frequencies as seen in the example shown in 
figure 1. Analysis of well logs in various regions of the world (e.g. Walden  and Hosken, 1985) 
observed that in the majority of cases reflectivity tends to depart from the white noise behaviour by a 
loss of power at low frequencies, thereby termed blue reflectivity. The assumption of white noise 
leads to a conventional deconvolution operator that can recover only the white component of 
reflectivity, thus yielding a distorted representation of the desired output, as pointed out by Sagaff 
and Robinson, (2000). The diagnostic and correction of these distortions in the application of Gabor 
deconvolution is the main subject of this work. 

Nonstationary convolutional model 
The constant-Q model (e.g., Kjartansson, 1979) is the underlying theoretical support for the 
nonstationary convolutional model and the Gabor deconvolution method. Its basic assumptions are 
linearity, frequency-independent Q and velocity dispersion. A theoretical model for an attenuated 
trace can be derived from the constant-Q model which is useful for analyzing the effects of inelastic 
attenuation and for searching different methods of correcting them. These effects on the signal can 
be summarized as amplitude decay, due to energy absorption, waveshape modification, due to 
stronger absorption of higher frequencies, and phase delay, due to dispersion.  

In contrast with the stationary convolutional model which can be formulated in a simple way either in 
the time or the frequency domain, the nonstationary convolutional model is easily depicted in mixed 
time-frequency domains. A mathematical model for an attenuated seismic trace ( )S f  is, (e.g. 
Margrave and Lamoureux, 2002), 
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where f is the frequency, τ is the arrival time, )( fσ is the Fourier spectrum of the source signature, 
)(τr  is the reflectivity, and 

 ( ))/(/exp),( QfiHQffQ ττπτα +−= ,    (2) 

where Q is the attenuation parameter and H indicates the Hilbert transform operation. Equation (2) 
states that the Fourier transform of the seismic trace is equal to the Fourier transform of the wavelet, 
multiplied by an integral that has the shape of a Fourier transform, but that given the presence of 
the time-frequency function ),( τα fQ , is rather a nonstationary extension of the Fourier concept, 
known in mathematics as a pseudodifferential operator. The function ),( τα fQ  contains the 
attenuation information and is endowed with minimum phase character as can be observed in the 
relation between the real and the imaginary part of the exponent, through the Hilbert transform. As 
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written, equation (1) assumes a spatially constant Q and models only primaries, though both of 
these simplifications can be removed with a slight complication in the formula. 

The theoretical relation between the Gabor transform and the pseudodifferential operators allows a 
asymptotic factorization of the nonstationary trace model, which can be considered a first order 
approximation to Equation (1), (Margrave and Lamoureux, 2002, Margrave et al., 2004), 

 ),(),()(),( fGrffWfGs Q ττατ ≈ ,    (3) 

which states that the Gabor  transform of the seismic trace, ),( fGs τ , is approximately equal to the 
product of the Fourier transform of the source wavelet, )( fW , the time-frequency attenuation 
function, ),( fQ τα , and the Gabor transform of the reflectivity ),( fGr τ .  

Gabor deconvolution and color correction 
The Gabor deconvolution is a non-stationary extension of the Wiener deconvolution method in the 
frequency domain and implies a minimum-phase source wavelet and white reflectivity series, which 
is not fundamental but should be addressed to avoid miscalculations. The method assumes that 

),( fGr τ , the Gabor amplitude spectrum of the seismic trace, is a rapidly varying function in both 

variables τ and f; )( fW , the Fourier amplitude spectrum of the source wavelet, is smoothly varying 
in f; and ),( fQ τα  is an exponentially decaying function in both variables τ and f, and constant over 

hyperbolic families of τf=constant.  An approximation ),( fτθ of the product )( fW ),( fQ τα  is 

obtained by applying a smoothing operator to ),( fGs τ . As ),( fτθ  represents the attenuated source 

wavelet, its minimum-phase function is estimated from its amplitude spectrum ),( fτθ  using the 
Hilbert transform as 
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where B  denotes the available spectral band. 

Finally the Gabor spectrum of the reflectivity is estimated in the Gabor domain as: 
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An example of the performance of Gabor deconvolution in the case of white reflectivity is shown in 
figure 2. Gabor deconvolution makes an excellent correction of the phase shifts and rotations 
introduced by attenuation. The Gabor deconvolution method, which has the constant Q theory for 
attenuation among its fundamental elements, compensates intrinsically for the effects of velocity 
dispersion. 

The color correction can be addressed in the time-frequency domain in the following way: if a time-
frequency model P(τ,f) for the nonwhite reflectivity is available, the deconvolution operator with color 
correction is 
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where ),( fGs τ  is the smoothed Gabor spectrum of the seismic trace, K is a stability constant and 

the phase spectrum ),( fc τφ is given by the following Hilbert transform, H,  
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The application of color correction is illustrated in figures 3 and 4.  Figure 3 shows what happens 
when the nonwhite reflectivity character is not taking into account at applying Gabor deconvolution. 
An overcorrection of the phase shifts and rotations leaves the trace with phase and rotations of the 
same order as initially. 

When the color correction factor is applied to the Gabor deconvolution operator, the phase 
differences are reduced to a small portion of the phase differences existing before deconvolution, 
this can be observed in figure 4. However the effect of color in the reflectivity series on the phase is 
just one component of the whole phase problem in Gabor deconvolution. Other factors affecting the 
phase and not considered in this work are noise in the seismic data, inaccuracies in the sonic log 
recording process, and the difference between the seismic Nyquist frequency and the maximum 
frequency of the sonic well logging tool. This latter factor is examined in Montana and Margrave, 
2005. 

Conclusions 
Gabor deconvolution is the nonstationary extension of Wiener deconvolution, based on the 
nonstationary extension of the convolution operation and the convolutional model. Color correction 
in reflectivity in Wiener deconvolution can be extended to Gabor deconvolution in an analog way. 
However this correction should be applied in conjunction with corrections to the other sources of 
amplitude and phase differences in deconvolution. 
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Figure 1. (a) Nonwhite reflectivity calculated from the sonic log of the Wascala well. (b) The autocorrelation 
shows nonwhite character, evidenced by the presence of significant negative values at small lags. (c): The 
amplitude spectrum of the reflectivity shows a rolloff from 80 to 0 Hz. 

 
Figure 2. Gabor deconvolution in for white reflectivity. (a): White reflectivity. (b): Attenuated seismic trace 
(forward Q=100). (c): Gabor deconvolved trace. (d): Time-variant apparent phase rotation before and after Gabor 
decon. (e): Time-variant phase shift. 
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Figure 3. Gabor deconvolution for nonwhite reflectivity. (a): Nonwhite reflectivity. (b): Attenuated seismic trace 
generated by applying a forward Q=100 filter and convolving the result with a minimum phase wavelet. (c): 
Gabor deconvolved trace without color correction. (d): Time-variant apparent phase rotation before and after 
Gabor decon, the phase rotations seem overcorrected. (e): Time-variant phase shift, the times-shifts appear 
overcorrected. 
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Figure 4. Gabor deconvolution for nonwhite reflectivity. (a): Nonwhite reflectivity. (b): Attenuated seismic trace 
generated by applying a forward Q=100 filter and then a convolution with a minimum phase wavelet. (c): Gabor 
deconvolved trace with color correction. (d): Time-variant apparent phase rotation before and after Gabor 
deconvolution. (e): Time-variant time shift. 


