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Introduction 
The multilayered transverse isotropic model with horizontal anisotropy axis is used to study 
fractured reservoirs. Reflection moveout in fractured media is usually used to determine azimuth 
of main set of fractures and to estimate  the crack density and to predict whether the ctacks are 
fluisd or dry (Contrera et al (1999)). In this paper, I use an inversion technique, originally 
developed by Blias (1983) for the layered medium with vertical symmetry axis (VTI media). This 
algorithm is utilized to determine an explicit formula for azimuthally-dependent NMO velocity in a 
HTI layered media with depth-varying orientation of the symmetry axis. The NMO inversion 
problem for the HTI medium was solved by Contrera et al (1999) using a technique, originally 
developed by Grechka and Tsvankin (1999). They derived a formula for azimuth-dependent NMO 
velocity using 2x2 matrices responsible for the ‘interval’ NMO ellipses in each layer. Here I 
suggest an alternative approach to NMO velocity derivation for the multilayered transverse 
isotropic model with depth-varying orientation of the symmetry axis. Explicit analytical formula for 
azimuth-dependent NMO velocity helps to develop insight on the anisotropy influence on 
reflection trveltime and to develop Dix-type inversion algorithm.  

Method 
Let’s consider a layered medium with horizontal boundaries and transverse isotropic layers with 
horizontal anisotropy axis in each layer.  Suppose the traveltimes of a reflected wave have been 
recorded for a fixed midpoint but for different azimuthal orientation. Let d be the source-receiver 
distance and dx and dy be the x and y progection of the sourse-receiver segment, α is an azimuth, 
fig. 1. Then the traveltime t is a function of dx and dy. This function contains only even powers of dx 
and dy. For conventional spreadlengths close to the reflector depth, for the aurbitrary 3-D 
subsurfaces, the traveltime function t(dx,dy) can be written in a form (Blias, 1988): 
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We can rewrite this equation using azimuth α (dx = d cosα, dy = d sin α) 
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This representtaion for anisotropic media was proposed by Grechka and Tsvankin (1998). Let hk 
be the thickness of k-th layer, φk be the azimuth of the anisotropy axis in the same layer; v0k is a 
vertical velocity in the layer. For each layer, we the HTI model is characterized by the stiffness 
tensor cijkl that corresponds. P and SV phase velocities are described with formulas using 
Thomsen’s notations (Thomsen, 1986). 

 
Figure 1. Source-receiver scheme 

 
I am using the same approach that has been developed by Blias (1983) for VTI medium. The only 
difference is that in HTI layer, Θ=π/2 corresponds to the vertical axis so instead of using angle θ, I 
will use an angle α = π/2-θ. For the phase P velocity VP(α) and phase angle α, we can write 
equaitons: 
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where )(cosˆ)(sin αθ DD = , ε is Thomsen parameter (Thomsen, 1986). From these equations, we 
can find explicit connection between the group velocity vP and group angle ψ::  
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A reflaction traveltime T can be calculated as a sum of traveltimes in each layer: 
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Here xk and yk are X and Y the projections of the ray in the k-th layer, 
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 θk is a ray angle, determined by the equation: 
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To find minimum of function T with respect to xk, yk, we use Lagrange function, which leads us to 
the system of equations: 
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where λ and µ are Lagrange multipliers (Blias, 1983). We have 2n+2 equations (3) – (4) to 
determine 2n+2 unknown xk, yk, λ and µ. First we find xk and yk as a solution of system (4) as 
functions of λ and µ independently for each k: 
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Then we substitute (5) into (2) and (1) and come to the parametric form of the time-distance 
relationship with λ and µ as parameters: 

 T = T0 + T2,0λ2 + T1,1λµ + T0,2µ2 + … 

 dx = d1,xλ + d2,xµ + d3,xλ3 + d4,xλ2µ + … 

 dy = d1,yλ + d2,yµ + d3,yλ3 + d4,yλ2µ + … 

From these equations we can determine coefficients wij in formula (1): 
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Here Pβ̂  is a coefficient, similarly to Thomsen parameter β and defined by formula: 
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The same equation holds for SV waves, only SVδ̂ is determined by formula: 
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If 0ˆ
, =kPδ  then formulas (6) – (7) are the same as for isotropic medium. Formulas (6) can be 

written in a matrix form: 

 B = W-1  

where B = ||Bij||,  W = ||wij||.  

Inverse Problem 
Now we describe Dix-type inversion to determine interval vertical velocities and anisotropic 
parametrs Pβ̂  and SVβ̂ . From traveltime measurement we know coefficients w11, w12 and w22. 
Then we consider equations (6) as a system with respect to A, B and C. This system has a unique 
solution: 
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where n is a reflector number. Taking into account (7), we can write system with unknown :   
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where ∆An = An – An-1, ∆Bn = Bn – Bn-1, ∆Cn = Cn – Cn-1. This system can be easily solved for the 
vertical velocity v0,n, azimuth φn and anisotropic parameter. After replacing Pβ̂  by SVβ̂ , formulas 
(6) – (7) hold for SV waves. It directly implies that we can find vertical SV velocity and anisotropic 
coefficient SVβ̂  by solving system (8) where the matrix B is calculated for SV waves. 

Conclusions 
A new reperesentation of NMO velocity has been derived for the multilayered transverse isotropic 
model with horizontal anisotropy axis in each layer. Dix’s type of inversion is applied to azimuth-
dependent NMO velocity to determine vertical P and S velocities and anisotropic parameters Pβ̂  
and SVβ̂ .  
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