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Summary 
Compressional-wave AVO responses and converted-wave AVO responses in elastic and 
anelastic two-layer isotropic Class 1 models are investigated. These responses are computed by 
utilizing Zoeppritz reflection coefficients and the Weyl/Sommerfeld-integral. Spherical-wave depth 
dependence for PP and PSv Class 1 models is found to be strongest near the critical angle. The 
constant-Q approximation is used to introduce anelastic effects. AVO responses of two-layer 
isotropic models are sensitive to anelasticity. This Q-factor dependence is strongest near critical 
angles.  

Introduction 
Amplitude-versus-offset (AVO) analysis was introduced by Ostrander (1984). It is also discussed 
in a paper by Hron et al. (1986) as amplitude versus distance. AVO analysis and AVO inversion 
are now widely accepted tools in seismic exploration. Linear approximations of the Zoeppritz 
equations are commonly used to implement plane-wave analysis. Small incidence angles and 
small parameter changes are assumed for these approximations. At larger angles linearized 
approximations begin to break down and they are not applicable near critical points. Even “exact 
Zoeppritz” is a plane-wave approximation to the real world. What, then, is the spherical-wave 
response for AVO Class 1? Krail and Brysk (1983) attempted to address this question, but 
incorporated a number of approximations, not all of which are valid at critical angles. The only 
approximation in the modelling study presented here is the assumption that compressional wave 
particle motion is parallel to the propagation direction and that converted-wave particle motion is 
perpendicular to the propagation direction. 

Anelasticity of some degree is found in all rocks encountered in nature. Anelasticity causes 
attenuation and velocity dispersion of seismic waves. Velocity dispersion means velocities are 
functions of frequency. Frequency dependence of seismic velocities can be quantified by the 
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frequency-independent quality factor Q (Kjartansson, 1979). This modelling study also seeks to 
quantify the sensitivity of Class 1 spherical-wave AVO responses with respect to finite Q-factors. 

Potentials and Displacements 
Plane-wave particle motion reflection and transmission coefficients for elastic isotropic media in 
welded contact are given by the Zoeppritz equations. The formalism for expressing spherical 
wave fronts as contour integrals over plane waves goes back to Weyl (1919). Aki and Richards 
(1980, p217) derive equations for generalized PP-reflections and generalized PSv-reflections in 
terms of potentials Φ (Equation 1) and Ψ (Equation 2): 
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[Notation is similar to Aki and Richards (1980).] Reflections from an elastic interface are computed 
firstly by introducing particle motion reflection coefficients given by the Zoeppritz equations. 
Secondly, particle motion u is computed from Equation (3) 

 ),0,0( Ψ×∇×∇+Φ∇=u  (3) 
and from the potentials given by Equations (1) and (2). Next it is assumed that displacement is 
parallel to the ray direction for PP reflected waves, and perpendicular for converted waves. Other 
displacement components are neglected. [This is the sole approximation in the procedure and 
introduces very little error (Ursenbach et al., 2005).] The p-integrations proceed for a single 
frequency point. They are repeated for all frequency points desired in the output bandwidth, and 
then the time domain response is found by inverse Fourier transform. Quadrature traces are 
determined by Hilbert transform, and the maximum instantaneous amplitude yields the peak 
response at the receiver. When corrected for spherical spreading, this gives an estimate of the 
reflection coefficient.  

Attenuation and Dispersion 
A mathematical treatment of anelasticity can be found in Aki and Richards (1980). They show that 
causality requires velocity dispersion, for which they derive the following approximate expression: 
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where Q is a frequency-independent quality factor. The values vref and ωref are assumed known. 
As in the elastic case before, spherical-wave displacements u are computed from the potentials Φ 
and Ψ. The integrations shown in Equations 1 and 2 again proceed one frequency point at a time. 
However, in the anelastic situation velocities are complex and must be recomputed for every 
frequency point, according to Equation 4. The P-wave quality factor for the top layer (QP1) is 
assumed to be known for the computations and is listed in the figures. QP2 (for the bottom layer) 
as well as S-wave quality factors QS1 and QS2 are calculated with the aid of empirical equations 
(Waters, 1978; Udias, 1999): 
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Modelling Results 
An actual gas-sand reservoir from the prairies is utilized to derive two-layer models for this study. 
Density ρ1 is 2400 kg/m3 for the layer just above the reservoir. P-wave velocity α1  = 2000 m/s is 
dictated by a reservoir depth of 500 m and a corresponding two-way travel time of approximately 
500 ms. The layer parameters for AVO Class 1 shown in Table 1 are adapted from Rutherford 
and Williams (1989). Output signal bandwidth and linear edge tapers are determined by choosing 
a 5/15-80/100 Hz Ormsby wavelet as the source signature. Free surface effects are not 
considered in this study. A P-wave point source and spherical incident wave fronts are assumed 
for the computations. The appearance of computed AVO results depends on scaling. Spherical 
spreading must be compensated for if results are to be compared to plane-wave responses. All 
normalization factors used to compute Figures 1 and 3 are derived by setting reflection 
coefficients R in Equations 1 and 2 to unity. The trace displays (Figures 2 and 4) are scaled 
individually in order to accommodate maximum amplitudes. Clipping of maximum trace 
amplitudes is indicated by colour changes. Figure 1 shows elastic AVO response magnitudes 
computed from trace envelopes. Figure 2 displays the corresponding spherical-wave traces, from 
which, after normalization, Figure 1 may be derived. The same two layer model as was utilized in 
the elastic situation is also employed in the anelastic study. All velocities listed in Table 1 are 
taken to be reference velocities here; the reference frequency (see Equation 4) is set to 50 Hz. As 
before, a 5/15-80/100 Ormsby wavelet is chosen as the source signature; a P-wave point source 
is assumed. Free surface effects are ignored. Calculations are performed for two different values 
of the top layer P-wave quality-factor: firstly, QP1 = 100 and, secondly, QP1 = 387.5 . The other Q-
factors are calculated from Equations 5 and 6 and are listed in Table 2. Figures 3 and 4 display 
the anelastic analogues to Figures 1 and 2.  

          Table 1. Layer parameters 
α1/[m/s] β1/[m/s] ρ1/[kg/m3] α2/[m/s] β2/[m/s] ρ2/[kg/m3] 

2000 879.88 2400 2933.33 1882.29 2000 
 

          Table 2. Derived Q-factors 
Qp1 Qp2 Qs1 Qs2 
100 215.1 25.8 118.1 

387.5 833.5 100 457.6 
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Discussion and Conclusions 
For Class 1 AVO models, the P-wave velocity is increasing across the interface as can be seen in 
Table 1. Because of this velocity increase a critical angle exists and head waves are generated in 
Class 1 models. A head wave can be seen separating from reflected waves at the highest angles 
in Figure 2b. Figure 1a shows the magnitude of RPP for Class 1. The greatest departure from a 
plane-wave comparison is observed in the vicinity of the critical angle. Normalized Q-dependence 
for spherical-wave AVO Class 1, as shown in Figure 3, to some degree mimics normalized depth 
dependence of the elastic situation (see Figure 1). Increasing Q-factors and increasing depths 
move normalized spherical-wave AVO closer to plane-wave comparisons. In summary, exact 
spherical-wave reflection coefficients may be calculated numerically by integration over the plane-
wave coefficients, RPP and RPS. Scaling by similar results obtained using unit reflectivity allows 
one to identify fundamental deviations from plane-wave behaviour. Class 1 models show 
significant amplitude deviations near the critical angle. This is observed even at 2000m depth.  
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 Figure 1. Spherical-wave reflection coefficients for Class 1 AVO, (a) PP (b) PSv 
 

                                         
 

 Figure 2. Spherical-wave reflection traces for Class 1 AVO, (a) PP (b) PSv 
 

                                          
 

 Figure 3. Anelastic spherical-wave reflection coefficients for Class 1 AVO, (a) PP (b) PSv 
 

                                          
 

 Figure 4. Anelastic spherical-wave reflection traces for Class 1 AVO, (a) PP (b) PSv 
 


