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A non-linear singularity-preserving solution to the least-squares seismic imaging problem with 
sparseness and continuity constraints is proposed. The applied formalism explores curvelets as a 
directional frame that, by their sparsity on the image, and their invariance under the imaging 
operators, allows for a stable recovery of the amplitudes.  Our method is based on the estimation 
of the normal operator in the form of an 'eigenvalue' decompsoition with curvelets as the 
eigenvectors'. Subsequently, we propose an inversion method that derives from estimation of the 
normal operator and is formulated as a convex optimization problem. Sparsity in the curvelet 
domain as well as continuity along the reflectors in the image domain are promoted as part of this 
optimization. Our method is tested with a reverse-time 'wave-equation' migration code simulating 
the acoustic wave equation. 

Introduction 
Motivated by recent results on stable signal recovery for natural images from incomplete and 
noisy data (see e.g. [1]), the seismic image recovery problem is formulated as a nonlinear 
optimization problem.  After linearization and by ignoring the source and receiver signatures, the 
discretized forward model that generates seismic data can be written as 

 )1(Kmd =  

In this single-scattering expression, )(xm represents the (singular) fluctuations in the earth's 
acoustic properties with respect to an appropriately chosen smoothly varying background velocity 
model (the density of mass is assumed constant). These fluctuations are referred to as the model 
and seismic imaging aims to recover both the locations and the relative amplitudes of the velocity 
fluctuations from seismic data. Applying the adjoint of the linearized scattering operator to the data 
vector ( d  in Eq.(1)) leads to the migrated image,  

 )2(dKy T=  
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An extensive literature has emerged on restoring the migration amplitude by inverting the normal 
matrix KK T=ψ  [2,3], and involves the computation of the pseudo inverse of the scattering or 
demigration matrix K ,  

 m = (KT K)−1KT d      (3)  

Unfortunately, the normal operator it too big to be constructed explicitly and is too expensive to be 
evaluated as part of an iterative Krylov-subspace solver to invert the Hessian (see e.g.[2]).  

Sparsity- and Continuity-Promoting Imaging 
We address the above issues by exploiting recently developed curvelet frames.  These frame 
expansions compress seismic images and consist of a collection of frame elements 'curvelets' that 
are invariant under pseudo-differential operators. These properties allow us to develop an 
approach similar to the so-called wavelet-vaguelette method (WVD), as proposed by [5] and later 
by [6], where scale-invariant homogeneous operators are inverted using the eigenfunction-like 
behavior of multiscale transforms such as the wavelet and curvelet transform.  

The solution is formulated in terms of a sparsity-promoting nonlinear optimization problem and 
can be seen as a formalization of earlier ideas on stable seismic image recovery. During the 
optimization, sparsity in the transformed domain as well as continuity along imaged reflectors, are 
jointly promoted. Both penalties are part of the following nonlinear optimization problem (see [7]) 

 P :     
˜ x = minx  J(x)   Subject  to  y − Ax 2 ≤ ε

˜ m = (AT )−1 ˜ x 

⎧ 
⎨ 
⎩ 

   (4)  

where the sparsity vector x  is optimized with respect to the penalty functional J(x)  and the data 
misfit. We use the term sparsity vector for x  to point out that this vector corresponds to the 
coefficients of a transform that is designed to be sparse on the model. 

The penalty functional J(x)  is designed to promote sparsity and continuity. The above 
optimization problem solves for the model by finding a coefficient vector x  that minimizes the 
penalty term subject to fitting the data to within a user-specified tolerance level ε. We reserved the 
'tilde' symbol to denote estimates that are found through optimization.  The recovered model m  is 
calculated by computing the inverse of AT , which represents the diagonally-weighted curvelet 
synthesis matrix. This synthesis matrix is designed such that 

 AAT r ≅ψ(r)      (5) 

with r  an appropriately chosen discrete reference vector and ψ  the discrete normal operator 
formed by compounding the discrete scattering and its transpose the migration operator. With 
A = CT Γ and C  the curvelet transform, Eq.(5) expresses the normal operator as a form of 
'eigenvalue' decomposition with curvelets as 'eigenvectors'. Γ  is the square-root of the 
'eigenvalues'  and can be shown to be smooth in the curvelet domain.  

Our algorithm for approximately inverting the normal operator involves the following sequence of 
steps:  

1) Form the normal operator using one's favorite numerical implementation for the migration 
operator and its adjoint, i.e.,ψ = KT K  with the symbol. This discrete normal operator 
needs to be made zero order; 
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2) Select a relevant reference vector, r , that is close enough to the unknown image; 

3) Estimate the diagonal approximation. This diagonal approximation defines the synthesis 
matrix A ; 

4) Estimate x  by solving the nonlinear optimization problem P . This program inverts the 
synthesis matrix. The discretized model vector m  is calculated from the recovered 
coefficient vector x  through the pseudo inverse of AT ; 

Example 
Figures 1-2 show the evaluation of our method on a typical subsalt imaging problem. Fig. 1(a) 
shows a sufficiently smooth background velocity for SEG-AA' salt model, with reflectivity shown in 
Fig.1(b).  This reflectivity is de-migrated and migrated ( KT K ) using the smooth SEG-AA' 
background  velocity,  Fig. 2(a) shows the result of this process.  Fig. 2(b) shows the recovered 
image  using our proposed recovery algorithm. Fig.2 (c) shows  the trace comparision between 
the migrated image (properly scaled) (Fig.2(a)), original reflectivity (Fig.1(b)) and recovered image 
(Fig.2(b)) along the horizontal  line in the bottom of image (3500 m depth) for the offsets from 4.3  
to 7.2 km.  For this example, we used a two-way wave-equation reverse-time migration and 
modeling [4]. The dataset consist of 324 shots and 176 receivers for each shot.  

Conclusion 
The method presented in this paper combines the compression of images by curvelets with the 
invariance of this transform under the normal operator. This combination allows us to formulate a 
stable recovery method for seismic amplitudes. Compared to other approaches for migration 
preconditioning, our method (i) brings the amplitude correction problem within the context of 
stable signal recovery; (ii) provides for a diagonal approximation of normal operator 

 

 (a) (b) 
Figure 1. (a), Reflectivity model,  (b) SEG-AA Sufficiently smooth background model. 
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Figure 2. Example of seismic amplitude recovery. (a) Normal operator  (modeling followed by migration) applied on 
the SEG-AA' reflectivity model, (b) recovered image using our proposed method, (c) amplitude comparison for the 
bottom reflector between original, migrated-demigrated and the recovered image. 
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