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Summary 
“So-called rays” in the anisotropy context are just to-line-loci-idealized energy transport channels 
(c.f. Cerveny 2001 p.28-30, p.103). They are (1) not traveltimes minimizing Fermat’s principle loci,  
(2) not pointwise Snell’s law conforming, (3) not direction-wise orthagonal to front tangent planes; 
(4) and, velocity or slowness magnitudes along loci directions differ from those in front-normal 
directions. All the understood attributes/characteristics of traditional rays, call those here “proper 
rays”, have been compromised through the inappropriate “so-called rays” labeling (likely from use 
initially in Rudzki’s lesser known 1913 paper).  

I show here that “proper rays“ in the conventional ray theory sense are involved in wavefront 
progression when triggered by idealized impulse excitation at a point source in an anisotropic 
medium segment. For homogeneous anisotropies those “proper rays“ have principal segmentals 
oriented along front-normal directions with mode-specific front-normal velocity magnitudes that 
come, for given medium parameters and front-normal directions, from eigenvalue solutions of the 
Christoffel matrix; those principal segmentals are repetetively linked with two or single other-
directed segmentals which manifest with physics-wise still puzzling velocities, forming thereby 
“proper ray ” loci within the energy transport channels. Reordered representations, call them 
regime rays, clarify paths and along-paths velocity detail, they quantify “proper rays” pathlengths 
and apparent- (so-called ray-), time-average-, path-mean-, and RMS- velocities. All this stems 
from fine-structured medium heterogeneity not captured in present anisotropy kinematics models.  

Anisotropy regime rays models explain manifesting kinematics credibly, and they can contribute 
important detail and capability to seismics velocity field modeling and seismic data inversing.   

Issues and Insights 
Anisotropy has during recent decades become a mainstream theme and concern in seismic 
exploration (e.g. MacBeth and Lynn ed. SEG reprints 2000; broad literature). This theme 
prominence notwithstanding, formulations and models for energy transport loci and wavefront 
propagation in anisotropic medium segments in terms of ray theory (Rudzki 1911, 1913; 
Gassmann1964, Chapman and Pratt 1992, Helbig 1994, Cerveny 2001, many others) convey a 
sense that something significant may have been overlooked (c.f. Vetter 1993, 1999, 2004; that 
prior work is here refined, elaborated, and extended). 

In the pre-anisotropy era the word ray(s) was vocabulary and concept that linked to basic ray 
theory with Snell’s law [1621] and Fermat’s principle consistent loci [1657] (e.g. Aki and Richards 



 
 Let it Flow – 2007 CSPG CSEG Convention 564

1980, … ). That traditional meaning of ray(s) has now, in anisotropic medium propagation context, 
been categorically compromised through the substitution sense of “ray(s)” for what may most 
fittingly be deemed “to-line-loci-idealized energy transport channels” (c.f. Cerveny 2001, others). 
This stems likely from Rudzki’s 1913 paper (Slawinski 2002 translation from French) in which he 
quested for clarity on the rays within anisotropic medium segments, and on Snell’s-law-like 
constraints at transition boundaries between anisotropic segments. In effect Rudzki started his 
exploratory development with the for his time reasonable (but invalid) premise that the evolving 
smooth loci from shot to front points in context of wavefront progression were “the rays” ; thus 
scalar and now also vectored “ray-velocities” designations, as oriented lengths of “the rays” 
divided by associated traveltimes. Those are just apparent velocities associated with the “so-
called rays”. 

Towards clarifying the issues we need to recall some fundamentals: (1) Green’s equation re at-
coordinate- frame-origin triggered disturbance in an isotropic or anisotropic medium, t vN (n; ci j ,ρ ) 
= rE • n, eqn (1a) in the Appendix, (Love 1882/../1927, 1944 ch.8, Rudzki 1911); this equation 
models kinematics of ideal impulse progression and, in dual role for a firmed traveltime value, it 
encapsulates wavefront detail as the envelope of tangent planes at all front points rE.  n denotes 
front-normal directions and vN  is front-normal velocity at rE front-points; (2) elasticity theory 
fundamentals in Kelvin-Christoffel matrix encapsulation Γ (n ; ai j , ρ ) yielding, through elasticity 
mode-specific moduli M = ρ vN

2 = fn(Γ (n ; ai j , ρ )), the mode-specific front-normal velocities vN (n; 
ci j ,ρ ) in Green’s equation; (3) Fermat’s principle (FP), adapted for seismic propagation as 
pointwise Snell’s law conforming ray loci, including direction discontinuities. This principle asserts 
that  “proper rays” progress along pathtimes (traveltimes) minimizing loci.  

FP is generally invoked in formulations as ‘extremals of Fermat’s functional’  (Rudzki 1913, …, 
Chapman/ Pratt 1992, Cerveny 2001,…). Those formulations need categorically valid nominal 
“proper rays” loci. In anisotropy context such formulations are not credible. Why?, because the 
hypothesised nominal paths do not have adequate analytical/ parametric flexibility to represent the 
complexities of “proper rays”. This is hindsight from constraints that evolve from minimized 
traveltime in Green’s equation, for source and front points [rO  rE ] deemed fixed, and front-normal 
direction n =[nx ny  nz ], or equivalently spherical coordinate angles(θ, φ), deemed the parameters 
to be optimally assigned. The significant intermediate steps and final results from minimized 
traveltimes are detailed in the Appendix. First stage traveltime minimizid constraints (2) and (3), 
combined with Green’s eqn (1b), give constraint eqn (4). In eqn (5) inversed from (4) vE depends 
on front-normal vN  and its directional derivatives re (θ, φ).  Eqn (7) shows vE dependence on vN 
*n, plus complicated weighting of the directional derivatives through matrix N = fn( nx ny nz ). Note 
that eqn (7) detail differs from Helbig’s corresponding expression (1994, p.13 (1A.6) ) but here 
without ‘common dispersion’ term. Helbig’s likely not corrrect expression has been variously 
quoted/used elsewhere (e.g. Mensch/ Rasolofosaon 1997).  

Regime Rays 
Relationships (8) [with two Pythagoras theorem encapsulations] and (9) [with orthogonally 
vectored detail] are variant forms of eqn (5) detail. The geometric representations/ visualizations 
of those constraints suggest strongly that “proper rays” [with representations as regime rays] are 
involved in the anisotropy kinematics.  

We are conditioned to think of rays as kinematics representations valid essentially for high 
frequencies/short wavelengths re scale of medium segments/ heterogeneity. Still, fine scale 
propagation detail might be here involved during disturbance progression through a fine structured 
medium of adequate extent. “Proper rays” must be continuous, and detail/ artifacts/ transitions 
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encountered, like layers, layer boundary characteristics, cracks, voids with fluid inclusions, all 
deemed fine structured heterogeneity, … , how any-which-way those would be optimally 
encapsulated through parameters of elasticity models,  the pointwise velocity and direction 
changes must be then Snell’s law conforming. That is feasible in ray models through linked front-
normal directed segmentals together with some other-directed segmentals, in patterns likely 
captured in the FP constrained eqns (5, 7, 8, 9), principally (8). But for regime rays encapsulation, 
lengths detail of segmentals, while presumably linked to medium microstructure, is not important 
in context of spectral content of practical perturbations. We can thus idealize the segmentals as 
proportionally sized infinitessimals. 

Conceptual re-ordering of infinitessimals encapsulates/ reveals/ clarifies the significant kinematics 
detail. Regime rays have just three or fewer components (Appendix Task-2 & eqns (10-16) ), each 
component the sum of same-direction infinitesimals. From those representations we discern then 
pathlengths (typically significantly larger than the apparent lengths), pathtimes (or traveltimes), 
and along paths velocity distributions with the significant characterizing means. It is through the 
great flexibility from linked segmentals in models that we can comprehend and analytically 
encapsulate the nuances in anisotropy kinematics, the association details for wavefronts and “so-
called rays” progression velocities with their analytical front-normal representation counterparts, 
the cusping and multi-sheeting of qSV mode fronts, and more. The insights  here portend potential 
for clarifying also puzzling polarization and dynamics issues in the anisotropy context.  

What are regime rays?  permuted detail of “proper rays“ in pathtime-explicit Green’s equation 
variant forms !  
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Appendix: Analytical Detail and Principal Tasks Flow 

 
t vN (nx, ny, nz ; ci j ,ρ)  = r • n = ( x nx  + y ny  + z nz  )                                  Green’s front progression equation (1a) 
 
t vN (θ, φ ; ci j ,ρ)  =  x cosφ sinθ + y sinφ sinθ  + z cosθ (1b) 
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TASK-1: Given (ai j ,ρ)  &  assigned front-normal direction n = [nx, ny, nz] => Γ([nx, ny, nz] ; ai j , ρ)    Christoffel matrix  
                                                  or spherical coord representation  (θ, φ)   => Γ(θ, φ ; ai j, ρ) 
=>  det( Γ - Mm*unit-matrix) = Ο   or  M 3 – M 2*tr(Γ) + M*tr(adj(Γ)) – det(Γ) = Ο  (cubic for linearization) => Mm moduli         
          &  ( Γ - Mm*unit-matrix) pm = Ο   => pm  polarization-vectors;        Mm and  pm  are mode-specific  
=>  Mm moduli:  Mm = ρ vNm

2  &   vNm = (Mm /ρ)1/2    with  m = (qP, qSV, qSH modes) ;          
=>  vN (nx, ny, nz; ai j ,ρ)   or  vN (θ , φ ; ai j ,ρ)   &  ∂ M/∂ n  & ∂ vN/∂ n = (M*ρ)-1/2   front-normal velocity &derivatives     
=>  vE = (eqn 5, 7) energy transport velocity; then for given t = tFRONT  =>  rE = t*vE   &  vN = vN*n  &  rN = t*vN   
 
 
TASK-2: regime rays: mode-specif. vectored vE & vN  or  rE & rN  are linked/constrained by eqns { 5, 7, 8, 9} after  task-
1 pairing;   inequality conditions (eqns 11-16) identify the applicable regime code and regime ray expressions;  
CODE: (1st) {N } segment in 3D along-front-normal, (2nd) {X or Y or Z} in-coordinate-frame plane, (3rd) {x or y or z} 
along coord-axes directns. =>{ l1, l2, l3 } & lPATH = l1+ l2+ l3 ; { t1, t2, t3 } & tPATH = t1+ t2+ t3; {v1 =vN=l1/t1, v2= l2/t2, v3= l3/t3}                   
& { vAPNT=|vE|; vTimeAve= lPATH / tPATH;   vRMS =(l1*v1 + l2*v2 + l3*v3)/(l1+ l2+ l3);  vPathMean= vRMS

2/vTA = tPATH*vRMS
2/ lPATH } ; 

these are significant velos of along-paths-distributions, also info for along-proper rays quantified heterogeneity from 
anisotropy (here not elaborated). Note vN < (|vE| = vAPRNT) < vTA < vRMS < vPathMean and |rN| < |rE| < lPATH.                                          
Regimes {NZ,NX,NY,Nx,Ny,Nz,Xy,Xz,Yz,Yx,Zx,Zy} included, but best done separately (not shown); {N,X,Y,Z,x,y,z} have rN = rE . 
 
 
REGIME RAYS; 3D Snell's law representation paths (direction- and velocity- consistent infinitessimals aggregated ) (10) 
unit vectors:  {1x , 1y , 1z } observation coordinate frame aligned with anisotropy structure-natural (or crystal-natural) frame;      
1N  = n = (sinθ cosφ ) 1x + (sinθ sinφ )1y + (cosθ )1z  VN = vN ( in 3D general directions ) 
 1Z = (cosφ ) 1x + (sinφ )1y  VZ = vN/ sinθ ( in planes  z = constant ) 
 1X = ( (tanθ sinφ )1y + 1z )/(1 + tan2θ sin2φ )1/2 VX = vN/ cosθ (1 + tan2θ sin2φ )1/2 ( in planes  x = constant ) 
 1Y = ( (tanθ cosφ )1x + 1z )/(1 + tan2θ cos2φ )1/2 VY =  vN / cosθ (1 + tan2θ cos2φ )1/2 ( in planes  y = constant ) 
  1x Vx = vN/ sinθ cosφ ( along  1x  directions ) 
  1y Vy = vN/ sinθ sinφ  ( along  1y  directions ) 
  1z Vz = vN/cosθ  ( along  1z  directions ) 
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(1) NZx :  (xN < xE ,  yN > yE ,  zN > zE) ; yE  >  zE sinφ tanθ ; xE  > yE /tanφ (11) 
 
 rOE  =  lNZx =  (zE /cosθ ) 1N + (yE /sinφ  -  zE tanθ )1Z  + (xE  -  yE /tanφ )1x  
 
 lOE    =  lNZx =  (zE /cosθ ) + (yE /sinφ  -  zE tanθ ) + (xE  -  yE /tanφ ) 

 tOE   =  tNZx =  (zE /cosθ )/vN + (yE /sinφ  -  zE tanθ )/ VZ  + (xE  -  yE /tanφ )/ Vx 
 

(2) NZy :  (xN > xE ,  yN < yE ,  zN > zE) ; xE  > zE tanθ cosφ ;   yE > xE tanφ (12) 
 
 tOE   =  tNZy =  (zE /cosθ )/vN + (xE/cosφ  -  zE tanθ )/ VZ + (yE  -  xE tanφ )/ Vy 

 
(3) NXy :  (xN > xE ,  yN < yE ,  zN > zE) ; zE tanθ cosφ > xE ;  yE >  zE tanθ sinφ (13) 
 
 tOE  =  tNXy   =  (xE /sinθ cosφ  )/vN + (zE  -  xE /tanθ cosφ )(1 + tan2θ sin2φ )1/2 / VX  + (yE  -  zE tanθ sinφ )/ Vy  
 
(4) NXz :  (xN > xE ,  yN > yE ,  zN < zE ) ; yE > xE tanφ ;  zE tanθ sinφ > yE (14) 
 
 tOE  =  tNXz  = (xE /sinθ cosφ  )/vN + (yF / tanθ sinφ - xE / tanθ cosφ )(1 + tan2θ sin2φ )1/2 / VX + (zE  - yE/ tanθ sinφ )/ Vz 
 
(5) NYx :  (xN < xE ,  yN > yE ,  zN > zE) ; zE tanθ sinφ > yE ;  xE > zE tanθ cosφ (15) 
 
 tOE  =  tNYx  = ( yE /sinθ sinφ )/vN  + (zE  -  yE /tanθ sinφ )(1 +  tan2θ cos2φ )1/2 / VY + (xE  -  zE tanθ cosφ )/ Vx 
 
(6) NYz :  (xN > xE ,  yN > yE ,  zN < zE) ; xE tanφ > yE ;  zE tanθ cosφ > xE  (16) 
 
 tOE  =  tNYx  = ( yE /sinθ sinφ )/vN  + (xE/cosφ tanθ - yE /sinφ tanθ )(1+ tan2θ cos2φ )1/2 / VY  +  (zE  - xE/tanθ cosφ )/ Vz 

 


