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In Gabor depth migration, the temporal Fourier transform is applied to the input seismic data to 
transform to the frequency domain. Then the spatial Fourier transform is applied to the wavefield 
localized in windows, which sum to one, known collectively as a partition of unity. This procedure 
is called the windowed Fourier transform, also termed as the Gabor transform. The Gabor-
transformed wavefield is extrapolated in depth by spatially variable phase shift and the inverse 
Gabor transform gives the extrapolated wavefield at the new depth. Since each spatial window 
requires a separate Fourier transform, the number of windows should be minimized given an 
accuracy threshold. Adaptive partitioning algorithm can address this problem. We introduce a new 
adaptive partitioning algorithm using the lateral position error, estimated from the phase error, as 
a criterion. Examples of 1D partitioning and a Marmousi imaging result are demonstrated to 
illustrate the performance of Gabor depth migration with the new adaptive partitioning algorithm. 

Introduction 
Migration with phase shift (Gazdag, 1978) is an important migration tool. For a layered earth with 
laterally varying velocities, phase shift migration leads to other advanced methods, e.g., phase 
shift plus interpolation (PSPI) (Gazdag and Sguazzero, 1984). Stoffa et al. (1990) showed the 
split-step Fourier method, which augments phase shift by a laterally variable, wavenumber 
independent, phase shift.  The “phase screen” migration method proposed by Wu et al (1992) 
extends the split-step Fourier concept to include wavenumber dependence in the laterally variable 
terms (e.g., Roberts et al., 1997; Rousseau and de Hoop, 2001; Jin et al., 2002). Margrave and 
Ferguson (1999) proposed generalized phase shift plus interpolation (GPSPI) and nonstationary 
phase shift (NSPS) theory and showed that GPSPI is the logical limit of PSPI, when a unique 
velocity is used for every spatial position. Outside exploration geophysics, GPSPI is referred to by 
Fishman and McCoy (1985) as the locally homogeneous approximation (LHA) of wave 
propagation at high frequencies. We adopt this term to put the GPSPI theory in a broader setting, 
emphasizing its physical meaning. Gabor depth migration (Grossman et al, 2002; Ma and 
Margrave, 2006) is closely related to, but different from the phase-screen method. This method 
uses the localizing windows (partitions) to break the input wavefield into pieces and then phase-
shifts them to a new depth, where the pieces are reassembled giving the wavefield in the new 
depth. This process is carried on until a maximum desired depth is reached.  We try to find 
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optimal sets of windows at depths to improve the computation efficiency given lateral positioning 
errors of the wavefield. For simplicity, we describe imaging algorithm in 2D using the new adaptive 
partitioning. 

Gabor Depth Migration Theory 
The LHA wavefield extrapolator, also known as the GPSPI extrapolator, is formulated as 
(Margrave and Ferguson, 1999) 
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where ( ), ,x zy w  is the seismic wavefield in the space-frequency domain at depth z , w  is 
temporal frequency, xk  and zk  (to be defined) compose the total wavenumber vector with a 

magnitude of ( )k x in the Fourier domain, x  denotes transverse coordinates, ( )ˆ , ,xk zy w is the 

Fourier transform of ( ), ,x zy w , zD  is the step size of extrapolation in z (vertical) direction, and Ŵ  
is the LHA wavefield extrapolator, which is a spatial phase shift term and defined as 
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where ( )v x  denotes the lateral velocity at x  along a slab with thickness zD . 

We approximate LHA extrapolator using 

 ( ) ( )ˆ ˆ( ), , ( ) , , ,x j j j xj
W k x k z S x W k k zD » W Då  (4) 

where { }jW  is a set of windows forming a partition of unity (POU), meaning 1j jW =å , the split- 

step Fourier operator (Stoffa et al., 1990) is ( )( )1 1( ) exp ( )j jS x i z v x v- -= D -w and ˆ ( , , )j xW k k zD  is 

defined by equation (4) using ( ) /j jk x k v= = w  with the reference velocities jv  defined as the 
average velocity across window jW . Equation (4) asserts that the LHA extrapolator can be 
approximated by a split-step Fourier extrapolator within each window. Using approximation (4) in 
(1), the LHA formula becomes 
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where jW  and ( )jS x are xk  independent and taken out of the integrand. Equation (5) is the 
formula used in the Gabor depth migration in this paper.  

Building Adaptive Partitions 

The simplest implementation of (5) would be to have { }( )j xW  be a set of constant-width windows, 
called atomic windows, uniformly sitting along the x  coordinate. However, this is generally 
inefficient as the atomic window width must be chosen to accommodate the most rapid velocity 
change and this may be completely unnecessary elsewhere. For efficiency, we can sum adjacent 
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atomic windows to form molecules in regions where there is little velocity variation. For this 
purpose, a criterion is required to specify when atomic windows can be consolidated. There are 
several methods (Grossman et al., 2002; Ma and Margrave, 2005) available but their 
consolidation criteria are not very physical. In this paper, a new scheme is developed using 
“lateral position error” as a criterion. Considering a straight ray emanating at angle q  from a point 
( ),x z  and traversing to( ),x zD  , we have tanx z= D q  and

 
/ sin /xk k vq w= = . Differentiating these 

results and rearranging gives 2sec /x z v vd qd q= D ¶ ¶  and / sec /xv kq q w¶ ¶ = , from which we 
conclude 
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Equation (6) relates the position error expected in a single depth step, xd  , to a velocity error of 
vd . This formula can be used to build the desired adaptive partition, given choices for the 

allowable positioning error and the maximum scattering angle of interest. To specify reference 
velocities, 1v  is chosen as the most frequently occurring velocity in a given depth step (easily done 
from a histogram of the discretely sampled ( )v x ) and then 1vd  is obtained from (6) as 1 1v av=d , 

where 
3 1cos sin /a x z-= Dq qd . Letting 2v  denote the next higher reference velocity and 3v  the next 

lower, we set the conditions 
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Using (7), calculation of 2v  and 3v  gives 
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Figure 1 illustrates this process. 

 
Figure 1.  (a) The reference velocities chosen according to equation (6) are shown on top of a velocity histogram. (b) 
Velocity profile ( )v x  (solid curve) and the reference velocities. 
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Proceeding until a reference velocity exceeds the range of ( )v x , which defines a complete set of 
reference velocities. Once selected, they can be used as measures to build an indicator function 
set ( ){ }jI x , using 
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where ( 1,2,..., )jv j n= is an element in the reference velocity set { }jv
 created by (6). We convolve 

( )jI x  with the atomic window ( )xQ  to create the adaptive POU ( )j xW  by 

 ( )( ) ( ).j jx I xW = *Q  (10) 
Thus there will be one window for each reference velocity even if the regions where that velocity is 
required are disjoint. Although we do not discuss it here, this method extends easily to 2D. 

 
Figure 2. Non-uniform partitions of unity as created by the algorithm described here. 

 
In Figure 2 (a), a bump velocity profile (shown in cyan colour) is used; two reference velocities are 
selected. Accordingly, two windows (green-dashed and blue-solid lines) have been chosen given 
a lateral position error criterion. Figure 2 (b) shows the partitioning algorithm can deal with such 
complicated lateral velocity variations as those in the Marmousi velocity model; a specific colour 
shows a single partition created by the algorithm. 

Gabor Depth Migration Example 
The Marmousi velocity section used in Gabor depth imaging in this paper is shown in Figure 3 (a). 
All depth images have been created using prestack shot migration.  

 
Figure 3. (a) Marmousi velocity. (b) Gabor depth migration result (a lateral position error of 5 m). 

 
Figure 3(b) shows the prestack, shot-record, depth migration of the Marmousi dataset using a 
position-error criterion of 5 m. Taking a closer look at the imaging target (a reservoir extending 
from distance 6000 m to 7500 m in depth about 2500 m, see also Figure 3 (a)), we know that the 
target reservoir has been accurately imaged. Observing the rest of the areas in the image, we see 
that they are all well imaged. 
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Conclusions 
The approximation of LHA extrapolator using the adaptive Gabor depth migration algorithm gives 
good results. The adaptive partitioning algorithm helps to achieve efficient depth imaging and the 
imaging accuracy and speed can be controlled using the adaptive partitioning scheme. 
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