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Summary  
We propose a greedy inversion method for sparse linear problems. The kernel of the method is based on a 
conventional iterative algorithm, conjugate gradients (CG), but it is utilized adaptively in amplitude-
prioritized local model spaces, thereby giving rise to a greedy algorithm. The adaptive inversion introduces 
a coherence-oriented mechanism to reduce the crosstalk between seismic events and hence increases both 
the image resolution and the convergence rate. We adopt the idea in a time-space domain high-resolution 
Radon transform for multiple attenuation and a local Radon transform for data interpolation. Synthetic 
examples show that the method can yield high quality solutions at much lower cost than existing standard 
methods. 

Introduction 
In recent years, the greedy approach has been adopted by the geophysical community for data 
decomposition and noise reduction. For example, Li et al. (1998) used a matching pursuit method to 
decrease the cost of Kirchhoff migration, and Liu and Sacchi (2002) introduced a binary image method to 
speed up the time domain hyperbolic Radon transform. For the high-resolution Radon transform, it has been 
shown that a Gauss-Seidel implementation of the greedy approach using prioritized moveout parameters can 
significantly reduce computational cost ( Ng and Perz, 2004). In this research we solve the greedy problem 
in a more global sense by solving small regions of moveout parameters using the CG (Hestenes, 1952) 
algorithm. We first examine the possibility of a 2D greedy implementation in a high-resolution Radon 
transform for multiple attenuation. Then we show another application of the technique for a large-scale 
problem, namely the local Radon transform (Sacchi et al., 2004) for data interpolation.  

Method 
According to www.wikipedia.org, there are five key components that make a greedy method: 

1. A candidate model set, from which a solution is created. 
2. A model selection function to choose the best candidate. 
3. A feasibility function to determine if the model candidate can contribute to the solution. 
4. An objective (misfit) function to assign a value to a solution, or a partial solution. 
5. A stopping criterion to control convergence. 
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In the context of the Radon transform, we can immediately identify the five key components for a greedy 
implementation.  First we can recognize the amplitude of the Radon panel in a 2D model space (tao and p) 
as the candidate set. Second the model selection function is a threshold operator which operates on the 2D 
Radon panel, and which selects a subspace comprising only those model elements whose amplitude exceeds 
the threshold value. Recalling that the task of the Radon inverse problem is to find an optimal amplitude 
distribution within the Radon panel such that we can fit the input data, we can use the inverse Radon 
transform as the feasibility function. The objective function is the L2 norm of the misfit, which is the 
difference between the observed data and the predicted data using the inverse Radon transform. Finally, the 
stopping criterion is the ratio of the residual norm to the observation norm. By controlling the misfit to 
observation ratio, we can control the degree of data fitting.  In our implementation, we use conjugate 
gradients (CG) methods (Hestenes, 1952) to minimize the aftermentioned objective function. 
With these ideas in mind, we propose a greedy least-squares method for high-resolution Radon transform as 
below in pseudo code: 

1. Initialize the data residual resid  with the input data and the model m  with zeros. 

2. Repeat the following loop until the stopping criterion is fulfilled: 
2.1 resi

i dLm '~ = ,    (1) 

where 'L denotes the forward Radon operator and im~  is the adjoint solution (i.e. the Radon panel 
generated by the Radon operator at the i-th iteration). 

            2.2 Choose a model subspace i
mS  based on amplitude threshold of the adjoint solution im~ . 

            2.3 Minimize the following cost function in the chosen subspace using CG algorithm:  
                 2||||)( i

resi
i LmdmJ −= ,  (2) 

                 where im is solution at the i-th iteration within the subspace, L is the inverse Radon operator. 
       2.4 Update the solution by immm += .  
       2.5 Update the data residual by .iresiresi Lmdd −=  

The method is greedy since the least-squares problem posed by equation 2 within each loop is applied in a 
small subspace (regions of moveout parameters) based on prioritization of the energy level. There are 
several benefits associated with this subspace strategy. First the small number of model parameters 
significantly reduces the computational cost for the CG algorithm. Second the convergence rate is faster due 
to the smaller model size within the subspace. Third, the result will naturally exhibit high resolution in the 
Radon domain. The resolution is controlled by a careful choice of the threshold value—note that the bigger 
the threshold value, the higher the resolution. The algorithm is slightly more expensive than Liu and 
Sacchi’s method (2002) since we have two loops. The inner loop solves a least-squares problem (equation 
2) within the subspace, and the outer loop (step 2 in general) updates the region of moveout parameters. 
However the minor extra cost affords significant improvement in resolution. Note that existing sparse 
inversion methods often tend to suppress weak model elements; by contrast, our method overcomes the 
problem by iteratively working on the data residual, and it usually recovers weak model elements at later 
iterations.  

Examples 

We first examine the feasibility of the proposed inversion method using the classic Radon transform 
problem. Figure 1 shows that the standard least-squares method (similar to Hampson, 1986) is not good 
enough to separate the multiples with small moveout from the primary. On the other hand, both our method 
and the iterative least-squares Cauchy norm method (Sacchi and Ulrych, 1995) provide good separation of 
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primary and multiples. Note that the Cauchy norm method is applied in time and space domain, which 
usually generates better result than the FX domain implementation, but with a higher cost. In this example, 
the proposed method is about 40 times faster than the time-space domain Cauchy norm method due to the 
simplicity of the model. For real data, usually the speedup is about 10-20 times.  
 

 
Figure 1: Comparison of three Radon transforms for multiple attenuation. (a) Input data. (b) Radon panel obtained with standard 
least-squares method. (c) Radon panel obtained with Cauchy norm sparse Radon transform (Sacchi and Ulrych, 1995). (d) Radon 
panel obtained with the proposed method. (e) Primary from the standard least-squares method. (f) Primary from the Cauchy norm 
sparse Radon transform. (g) Primary from the proposed method. 
 
We also test the algorithm on another sparse inverse problem, namely the local Radon transform (or 
generalized convolution, Sacchi et al., 2004). The idea is to simulate seismic data using a spatially and 
temporarily variant convolution operator. Instead of using a single Radon panel to fit the data, the method 
assigns weights to local Radon panels for data within local spatial windows. Sacchi et al. (2004) proposed a 
global problem in which the seismogram is generated by summing up the contributions from all local Radon 
panels. Typically if the algorithm is implemented in FX domain, one needs to think about overlapping time 
windows to address structural variation with time. To avoid this problem, we propose a TX domain 
implementation so that time-variant information is naturally incorporated. The problem is huge since the 
dimension of the model is higher than that of the conventional Radon transform. We find that the greedy 
least-squares method is suitable for this kind of sparse problem. Figure 2 shows the result of the local Radon 
transform for data upsampling in space. The input data is seriously aliased and there are strong amplitude 
variations in two events. In addition, some random noise is added to complicate the problem. Figure 2b 
shows the result after two iterations of the greedy method. All main features are recovered, but the noise is 
not. Figure 2c is the result after six iterations of the algorithm. We can see that the noise begins to appear. 
This is reasonable since random noise usually generates weak amplitude in the Radon panel, and 
consequently the inversion tends to assign a low priority to its reconstruction.  

Conclusions 
We have proposed a method for sparse linear problems and have validated the idea using two synthetic 
examples for multiple attenuation and for the local Radon interpolation. The method is efficient and not 
sensitive to noise. It also works for field data (not shown in the paper due to limited space) at an affordable 
computational cost. One shortcoming of the algorithm is that one needs to play with the threshold value to 
acquire optimal results. Different datasets may demand different threshold values. Except for this caveat, 
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the method opens a door for solving many sparse problems in an efficient way. An ongoing research is 
focused on comparing with the Gauss-Seidel method (Ng and Perz, 2004) to better understand the benefits 
of the proposed method.  

 
Figure 2. Greedy least-squares method for local Radon interpolation. (a) Input TX domain data. Note that every second trace is 
removed. (b) Interpolation result after 2 iterations of the greedy method. Most of the significant information is recovered. (c) 
Interpolation result after 6 iterations of the greedy method with minimum misfit. 
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