
Frontiers + Innovation – 2009 CSPG CSEG CWLS Convention 388

 
 

 
  

Properties of Gabor Operators for Seismic Imaging 
Michael P. Lamoureux* 

Department of Mathematics, University of Calgary 
mikel@ucalgary.ca 

and 
Gary F. Margrave 

Department of Geoscience, University of Calgary 
 

Summary  
We characterize the mathematical properties of Gabor transforms and Gabor multipliers, which form an 
important toolset in seismic data processing techniques incorporating nonstationarity. It is established that 
the Gabor multiplier is represented as a sum of product and convolution operators. The Gabor mulitplier 
acts as a “best fit” approximation to pointwise modification of a signal in the Gabor domain.  The 
composition of two Gabor multipliers is approximately a Gabor multiplier, with error term given by a 
commutator operator. The composition of a Gabor multiplier with a Fourier multiplier is a Gabor multiplier, 
in certain useful cases. The Gabor multiplier is bounded by the size of the multiplier, in certain useful cases. 

Introduction 
Seismic imaging occurs in the context of inhomogeneous, anisotropic media, and mathematical modeling of 
the physical propagation of waves must take into account the local and global variations of parameters that 
characterize physical properties of the geology. Processing of data should respect these inhomogenities, and 
typically must be designed in a nonstationary manner, to track the known parameter variations.  
 
A specific implementation of nonstationary filtering that our research groups has been developing uses 
Gabor transforms and Gabor multipliers in a variety of seismic data processing applications such as spectral 
deconvolution, depth migration, and reverse time migration. Some recent work on this include (Wards et al., 
2008), (Ma and Margrave, 2008), (Ismail, 2008), (Ma and Margrave, 2007a), (Ma and Margrave, 2007b), 
(Henley and Margrave, 2007), (Montana and Margrave, 2006), (Margrave and Lamoureux, 2006), and 
(Grossman, 2005). Some foundational references include (Margrave et al., 2003b), (Margrave et al., 2003a) 
and (Margrave and Lamoureux, 2002). Gabor techniques are an extension of the Fourier methods applied to 
localized signals, allowing mathematical models of physical material with inhomogeneities.  
 
The key step in the Gabor method is to break up a signal into small, localized packets by multiplying the 
signal with a window function. Typically, the window is a smooth “bump” function, such as a Gaussian, 
localized at the point of interest in the signal. The localized packet can then be analyzed or modified using 
Fourier techniques. This is done for a collection of windows, covering the entire extent of the signal. 
Finally, all the processed packets are re-assembled into one full, nonstationarily processed signal.  
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Figure 1: A signal, a window, and the localized packet.                         Figure 2: A spread of localized signal packets.  

 
An illustration of this windowing method is presented Figure 1, which shows a sinusoid signal aligned 
above a bump function. The product of the two is shown in the bottom third of the figure, illustrating a short 
packet of signal in the middle of the time axis. This packet is a localization of the signal.  
 
More generally, in Figure 2, a signal is decomposed into a sum of several signal packets, illustrated in the 
figure as a set of 10 packets, localized to different positions on the time axis. For this particular example, the 
packets are the same except for their location. For a more complex signal, the packets would be different, 
with each packet capturing the local information of the signal in the interval framed by its window. 
 
A Gabor multiplier acts by modifying the localized packet using a specified Fourier multiplier. Each packet 
can have a different Fourier multiplier, which allows for nonstationary filtering. The properties of the Gabor 
multiplier are completely determined by specifying the individual Fourier multipliers that go with it. We 
refer the reader to the references for examples of constructions of Gabor multipliers  used in seismic 
imaging.  

Theory of Gabor transforms and multipliers 
The Gabor transform of a signal is given as a localized Fourier transform, so we can define the transform as 
   (Gf)(m,ω) = F(f ⋅wm)(ω), 
where f is the signal in time (such as a sequence of data points from a single shot record), wm is a window 
function for some index m, F is the Fourier transform operator, and ω is the frequency variable. 
An inverse to the Gabor transform is obtained by first selecting a set of dual windows v1, v2, ..., vM to go 
with first windows w1, w2, ..., wM in such a way that their products form a partition of unity, 
                                ∑ vm ⋅wm = 1. 
The inverse transform is given as the sum (over the index m) 
   (Hg)(t) = ∑ vm(t) F-1(gm)(t), 
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where g = g(m,ω) is a function of two variables (the window index m, and frequency variable ω), F-1 is the 
inverse Fourier transform, gm indicates the function of frequency given as gm(ω) = g(m, ω), and t is the time 
variable for the signal. 
The partition of unity condition gives the following result, allowing one to invert the Gabor transform: 
   Theorem: The composition HG = I is the identity operator. 
A bit of calculation show the following as well: 
   Theorem: The composition GH = P is a self-adjoint projection, 
provided the windows wm, vm are all real-valued functions.  
In particular, the transform H is only a one-sided inverse to the Gabor transform G, which explains why the 
Gabor theory is not quite as elegant as Fourier theory. However, the fact that  GH = P is a projection gives 
useful results, as shown in the following discussions.  
A Gabor multiplier is specified by fixing a function α = α(m,ω) of two variables, mapping a signal f to its 
Gabor transform, multiplying by α and then returning to the signal space by inverse transform H. Thus we 
define the multiplier Gα on a signal f as the composition 
   Gαf = HMαGf. 
Equivalently, the operator Gα is the composition of the Gabor transform G with a pointwise multiplier Mα 
followed by the inverse transform H. It is remarkable that this nonstationary operator can be expressed as a 
sum of compositions of multipliers and convolution operators, as in the following: 
   Theorem: Gα = ∑ Mvm Cm Mwm, the sum over m of multipliers and convolutions, 
where Mvm is multiplication by the window function vm, Cm is convolution by the function F-1(α m) and Mwm 
is multiplication by the window function wm.  
The action of the Gabor multiplier is to take the function f = f(t), create its representation in the Gabor 
domain as g = g(m,ω), modify it to a new function αg = α(m,ω)g(m,ω), and map that back to some new 
signal f1 = Gα f. It would be wonderful if the result f1 was represented in the Gabor domain as exactly the 
function αg. It is not. However, it is close: it turns out that f1 is the unique signal whose Gabor 
representation is closest as possible to the function αg. This is summarized in the following: 
   Theorem: Gα f =  arg min || Gf1 - αg || = arg min || Gf1 - MαGf || ,  
where the minimization is taken over argument signal f1. and the norm is the energy norm in the Gabor 
space of functions of two variables. This result follows from the observation that GH is a projection. 
A related calculation shows that the error between the Gabor representation of Gα f and the “expected” 
function αg = MαGf can be determined exactly, as stated in the following: 
   Theorem: ||G Gα f - MαGf || = || [GH,Mα]Gf ||, 
where [GH,Mα] = GHMα - MαGH is a commutator of operators. Thus for some choices of multiplier α, the 
error can be very small -- precisely when Mα nearly commutes with the projection GH. 
A similar calculation, relying on the fact the GH is a projection, shows the composition of two Gabor 
multipliers is nearly a Gabor multiplier. In fact Gα composed with Gβ is close to the operator Gαβ. The error 
is also given by a commutator, as summarized in the following: 
   Theorem: Gαβ - GαGβ.  = H[GH,Mα]MβG = HMα [Mβ,GH]G. 
Once again, for certain choices of multipliers and/or windows, these commutators could be small, or zero, 
so the error term may vanish.  
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For instance, replacing the Gabor multiplier with the usual stationary Fourier multiplier Fα , where α = α(ω) 
is now a function only of the one variable, we obtain 
   Theorem: Gαβ = FαGβ , provided the windows vm = 1 for all m. 
Similarly, 
   Theorem: Gαβ = GβFα , provided the windows wm = 1 for all m.  
This result has been used extensively in Gabor decon, where the stationary seismic source, represented by 
operator Fα , is acted on by a nonstationary Q filter, represented by operator Gβ , as discussed in Margrave et 
al., 2002, 2003a, 2003b, 2006. 
A final result concerns the operator norm of the Gabor multiplier, which is restricted by the size of the 
multiplier α. In certain cases, we can be very specific, as in the following: 
   Theorem:  || Gα || ≤ max | α(m,ω) |, where the max is taken over variables m,ω. 
This holds in the symmetric case, where the duals windows vm = wm match the originals. This bound is 
important for stability in wavefield extrapolation. In practice, the symmetric window condition can often be 
dropped, and reasonable stability is preserved.  

Conclusions 
We have established several mathematical properties of Gabor transforms and Gabor multipliers which are 
essential to their use as nonstationary data processing tools. We refer the reader to the references for 
examples of their use, where the desired properties had been conjectured but not yet established. 
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