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Summary  
This work deals with inverse problem of modeling the quality factor for heterogeneous dissipative media. A 
numerical method for recovering relaxation parameters of the medium is exploited. The relaxation spectrum 
of a dissipative medium is contained in the spectral measure in the Stieltjes integral representation of the 
effective complex modulus. The problem of identification of the spectral function from effective 
measurements of complex viscoelastic modulus in an interval of frequencies has a unique solution, however 
the problem is ill-posed. To obtain a stable reconstruction of the spectral measure, a discrete approximation 
of the spectral measure is derived from a rational approximation followed by its partial fractions 
decomposition. Assuming that the frequency-dependent complex viscoelastic modulus can be recovered 
from the results of large-scale inversion step in the computation domain or can be modelled for a specific 
anelastic material. We present a new inversion method based on the constrained rational ( ],[ qp -Pade)  
approximation of spectral functions with regularization. Numerical examples are given to demonstrate the 
validity of the algorithm. 

Introduction 

Attenuating and dispersive effects are often quantified by the quality factor in wave propagation through an 
anelastic material. Several modeling methods for wave propagation through anelastic media have been 
presented where the attenuating and dispersive effects are taken into account. In the time-domain, the  
equation of motion can be written in a form of differential equations by introducing additional memory 
variables (Day & Minster, 1984; Emmerich & Korn, 1987; Emmerich 1992; Carcione et  .,al  1988; Ely & 
Steven, et  .,al  2008; Xu & McMechan, 1995). The stress-strain relation relates to the material relaxation 
parameters through these memory variables represented in the complex viscoelastic modulus in the 
frequency domain. To approximate a quality factor that is approximately constant over a specified 
frequency band requires 2 to 3 memory variables per decade of bandwidth per stress component per 
computational unit cell. In order to reduce the cost for computation of synthetic seismograms, we present a 
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new approach which allows us to identify memory variables given measurements of  complex viscoelastic 
modulus, and to further estimate the quality factor.  
 
Modeling of the quality factor and rational approximation for inversion 

We consider a homogenized isotropic viscoelastic medium in which the material physical properties are  
spatially independent. In the frequency domain the relation between stress σ and strain ε  in a linear 
viscoelastic medium is: 

)()()( ωεωωσ M=  

where )(ωM is the complex viscoelastic modulus. The quality factor Q  as a function of angular frequency 
ω  is defined as  
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where θ  is the phase of .M  )(ωM is uniquely determined by a given )(ωQ  in a causal medium since 
Re M and Im M  must obey a Kramers-Kronig relation. In seismic applications, Q   is normally assumed to 
be frequency-independent or only slowly varying with frequency. The information about the relaxation 
spectrum of the medium is contained in the spectral measure η  in the analytic Stieltjes integral 
representation of the effective complex modulus (Steven & Mister 1984): 

∫
∞

+
=

−
=

0

)()(
)(

xs
xd

M
sMM

sF U η
δ

,       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==∫

∞

0

,1)( ωη is
x

xd  

where UM  is the unrelaxed modulus and Mδ is the relaxation of the modulus. The function )(sF  is analytic  
outside interval )0,(−∞  in the complex s -plane and all its singularities are in the interval )0,(−∞ . Based on 
the theory of inverse homogenization (Cherkaev 2001) and the results (Zhang & Cherkaev 2008), the 
function )(xη  is approximated by a step function with a finite number of steps, so that   
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Here ns is the n -th simple pole with residues nA , q is the total number of poles. Thus, the approximation of 
the dissipation factor )(ωQ  can be written as:  
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A new numerical inversion algorithm for the reconstruction of the spectral measure η  is developed using a 
constrained rational approximation of the spectral function and its partial fraction decomposition (Zhang & 
Cherkaev, 2008; Zhang & Lamoureux, et .al , 2008). We consider ],[ qp -Pade approximation of the spectral 

function )(sF  in the form of 
)(
)()()( ],[ sb

sasFsF qp =≈  where )(sa and )(sb are polynomials with order p and 

q , respectively. The orders  p and q  of the polynomials in the numerator and denominator of )(],[ sF qp  are 
chosen arbitrarily or could be obtained taking into account the topology of the medium. Assuming that the 
frequency dependent complex viscoelastic modulus )(sM  (or )(sF ) can be measured or can be modelled 
analytically. Given the measured data pairs ),( kk dz with )( kk zFd = , the unknown coefficients of 
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polynomials )(sa  and )(sb are determined by solving the linear system of equations: dSc = , where the 
vector c  contains all normalized coefficients of two polynomials )(sa  and )(sb , the vector += rdd i id and 
the matrix += rSS  i iS , subindices r and i indicating the real and imaginary parts of the matrices with entries 

in terms of data, i 1−= .   To derive a stable numerical algorithm, the developed Tikhonov regularized 
solution c  for the above linear system of equations solves the following constrained minimization problem:                   
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Here || · || denotes the usual Euclidean norm and λ  is a positive regularization parameter, nA  and ns  are 
residues and poles of the partial fraction decomposition for the reconstructed spectral function )(sF . The 
quality factor Q  is calculated using the above derived formula.   

Results 

As a test example we consider inverse modeling dissipation factor Q  in a linear viscoelastic medium using 
measurements of complex frequency-dependent modulus )(sM for the Zener model. The  values of material 
strain relaxation times and stress relaxation times are chosen from (Tal-Ezer & Carcione,  Kosloff, 1990) for 
numerically solving the 1-D viscoelastic equation of motion with L  relaxation mechanisms. The derived 
formula of the spectral function for this analytic model has finite L -terms in a form of partial fractions 
where the parameters of material relaxation times are represented in the expression of  residues and poles of 
the spectral measure. Using simulated values of the complex modulus )(sM where =s iω  with 5=L  
relaxation mechanisms to yield a constant Q  = 100 at 50 data points in the seismic exploration band of 
frequencies from 2Hz to 50Hz, residues and poles of the spectral function shown in Figure 1 and true and 
computed spectral measure in Figure 2 are reconstructed almost exactly in the case when the order q of 

],[ qp -Pade approximation is bigger or equals to  5. The recovered poles and residues are used to estimate 
the material strain relaxation times and stress relaxation times with the number of relaxation mechanisms 
being less than 5 using the constrained ],[ qp -Pade approximant method (Zhang & Cherkaev, 2008) (Zhang 
& Lamoureux, et  .al  2008)  with lower order 5<q  for evaluating the quality  factor Q  = 100 shown in 
Figure 3. The true and computed phase velocity versus frequency is calculated as /)( ωω =c Re( ck ), where 

)(/ ωω vkc = , the complex velocity ρωω /)()( Mv = , the density ρ  = 2000kg/m 3 , and the relaxed 
modulus RM = 8Gpa in the numerical simulations. Our results agree with the published simulations in (Tal-
Ezer & Carcione, Kosloff, 1990). The predicted values of relaxation mechanisms can be used for seismic 
wavefield simulations in viscoelastic media. 
 
Conclusions and future work 
A new approach for inverse modeling of the quality factor in an  attenuating medium using rational ( ],[ qp -
Pade) approximation of spectral functions is presented. The complex modulus of viscoelastic materials 
contains information about relaxation parameters of the medium. The measurements of frequency-
dependent viscoelastic modulus can be used for deriving information about the relaxation mechanisms and 
modeling the dissipation factor. Further work: The estimated relaxation mechanisms shown in the numerical 
simulations can be used for simulation of seismic wavefields in viscoelastic media. 
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Figure 1 Reconstruction of residues and poles of the  spectral  
function. 

 
Figure 2  True and computed spectral measure. 

 
  

 
  Figure 3  Reconstruction of the quality factor. 

 
    Figure 4  True and computed phase velocity. 

 


