# Regime Rays: Visualizing the Fermat/Snell Loci in Homogeneous Anisotropic Media 

William J. Vetter, P.Eng. (NF), Ph.D., (ret. Prof. Eng., Memorial U., NF Canada) vetterb@sympatico.ca Kitchener, ON

## Summary

Present understanding and analytical encapsulation of anisotropy kinematics, even in homogeneous anisotropy medium segments which are here the focus, is incomplete/incorrect re the familiar Fermat/Snell ray theory premises [-> FS-rays]. The traveltime expression $t_{O N}=t_{O E}=\left(r_{E} \bullet n_{N}\right) / v_{N}\left(n_{N}, c_{i j}, \rho\right)$, attributed to Green (Love 1927, Rudzki 1911), has been deemed essentially a mode-specific plane-wave progression dictate [here o, $N, E$ subcripts designate Origin, front-Normal points/directions, Energy-flux arrival- points/directions]. It is moreso a constraint, call it an ansatz (starting premise), which for particular homogeneous anisotropic medium models and specified front-normal direction firms direction/progression-speed of FS-ray segmentals in part along front-normal direction but, it turns out, with complementing segmentals with maximally two other orientations. Regime rays is label for representation loci, when like-oriented segmentals have been re-ordered to single segments, and those segments are then linked.
Through regime rays we can discern and quantify significant analytical FS-rays detail, the time-fractions and segment lengths plus progression speeds for the three or fewer oriented segments. Those details yield the significant FS-ray-specific characterizing velocities for the along-paths velocity distributions $\left\{v_{\text {APPARENT }}\right.$, $\left.v_{\text {TIME-AVE }}, v_{\text {RMS }}, v_{\text {PATH-MEAN }}\right\}$; also $l_{\text {PATH }}$ which are true pathlengths for intangible FS-ray loci.
All this comes from overlooked extra prescribed directions/progression-speeds detail in sequenced moderelevant eikonal equations, relevant for FS-rays for given front-normal directions. The FS-rays per se, say in medium natural coordinate frame, progressing mode-specific from point-shots $\boldsymbol{r}_{\boldsymbol{O}}$ at origin to $\boldsymbol{r}_{\boldsymbol{E}}$-frontpoints, are anchored to their energy flux line-loci, the 'so-called group- or ray-velocity representation loci'. Beyond analytical essentials previously communicated I provide here simulations/ visualization for all modes of an orthorhombic standard model. Regime rays clarify the long-puzzling detail between paired points on the wave surfaces and their ansatz-front-normal velocity representation surfaces.

## From traveltime ansatz to regime rays models

It is well established that wave propagation disturbances through composites of fine-structured layering and fine-structured heterogeneities broadly, have EMT (effective medium theory, long wavelength regime) progression speeds that are virtually constant beyond a distinct transition zone re wavelength/composites-repetition-thickness ratio (e.g. Macbeth 2002). I suggest that Fermat's principle and Snell’s law should apply in such composites also for long wavelength regime FS-rays, for progression directions not just orthogonal or parallel to ordered layering or other fine-scale structured heterogeneity. This can be credibly expected, because in the broader physics context Snell’s law and Fermat's principle are encompassed within the remarkable 'principle of least action' of Maupertuis [1746], [also Leibniz, Euler, Hamilton, Feynman,... ]. At any rate, what manifests from this hypothesis agrees with analytical models and kinematics manifestations in diverse experiments. As simplest example take the above pathtime ansatz
$t_{O N}=t_{O E}=\left(\boldsymbol{r}_{\boldsymbol{E}} \bullet \mathbf{n}_{N}\right) / v_{N}\left(\boldsymbol{n}_{N}, c_{\boldsymbol{i} \boldsymbol{j}}, \rho\right)$, but reduced to progression paths in just the x.vs.z plane as $t_{O N}=t_{O E}=\left(x_{E} \sin \theta+z_{E} \cos \theta\right) / v_{N}$, with $\theta$ as polar angle re z-axis direction. Then if $x_{E}>z_{E} \tan \theta$, the as two segments partitioned equivalent is $t_{O N}=t_{O E}=\left(z_{E} / \cos \theta\right) / v_{N}+\left(x-z_{E} \tan \theta\right) /\left(v_{N} / \sin \theta\right)$. First segment has length $l_{1}=\left(z_{E} / \cos \theta\right)$ with progression speed $v_{1}=v_{N}$, and the second $l_{2}=\left(x-z_{E} \tan \theta\right)$ with speed $v_{2}=\left(v_{N} / \sin \theta\right)>v_{N}$. Transition $v_{1}=v_{N}$ to $v_{2}=v_{N} / \sin \theta$ conforms with Snell's law, front-normal oriented $l_{1}$ of regime ray in $\mathrm{y}=0$ plane refracting into x -direction oriented $l_{2}$, ending at front point $\left[\begin{array}{ll}x_{E} & Z_{E}\end{array}\right]$.
Else if $z_{E} \tan \theta>x_{E}$, the ansatz transforms to $t_{O N}=t_{O E}=\left(\mathrm{x}_{E} / \sin \theta\right) / v_{N}+\left(z_{E}-x_{E} / \tan \theta\right) /\left(v_{N} / \cos \theta\right)$, with $l_{1}=\left(x_{E} / \sin \theta\right)$ and speed $v_{1}=v_{N}$ front-normal oriented. Then Snell's law conforming refraction produces z-directed $l_{2}=\left(z_{E}-x_{E} / \tan \theta\right)$ with $v_{2}=\left(v_{N} / \cos \theta\right)>v_{N}$, ending at $\left[\begin{array}{ll}x_{E} & z_{E}\end{array}\right]$ front-point.
The common pathtime ansatz expression has been reframed in two ways, depending on specific association detail between front-normal orientations and for given medium parameters consequent energy flux loci (socalled ray- or group-velocity representation loci), both with two-segmented regime ray components.
The general ansatz can/must be elaborated to one of 18 different expanded detail forms [really 25 , of which 7 have single-direction loci]. Regime rays are analytical representations for the significant FS-rays detail, through aggregation of same-oriented segmentals to single segments. The regime rays condense unknown detail re sequenced segmentals into analytical expressions which reveal then essence of that detail. Much of that analytical detail is can be found in a previous Abstract (Vetter 2007, accessible through CSEG: ‘2007 CSPG CSEG Joint Convention’, Seismic Processing II).

## Orthorhombic Medium Simulation Example

Figures 1 to 3 below show regime rays simulation detail for Schoenberg and Helbig’s (1997)‘orthorhombic standard model'. I have used Helbig's explicit Kelvin-Christoffel matrix expansion (1994, Appendix 4B, short version valid for orthorhombic and higher symmetry in medium natural coordinate frame), and a novel compact expression for vectored $\boldsymbol{r}_{E}$, derived from the pathtime ansatz [(eqn 1b) in spherical coordinates $(\theta, \phi)$ ], together with the pathtime minimizing derivatives re $(\theta, \phi)$. The below equation 2 is its columnvectored form, after re-converting from spherical- back to rectangular coordinates.
As an important 'aside', eqn.2, columned as shown, is variously incorrect in the literature [e.g. Helbig 1994, p. 13 eqn.1a.6\{without common dispersion term\}; Mensch and Rasolofosaon 1997 eqn.12; ... ]. Further, Auld’s (1973) suggested 'carrier modulation' analogy, [velocity of carrier<--> vectored phase velocity, velocity of modulation envelop<-->vectored group- or ray-velocity] is not realistic/ applicable, nor are then 'phase-' and 'group-velocity' really relevant or proper designations for context of the FS-rays ansatz.
Equation (3), also from eqn.1b plus derivatives, is important for visualization, transparency, and credibility of the regime rays, which reveal pathtimes/ pathlengths/ velocity detail, and thus quantifiable heterogeneity.

$$
\begin{equation*}
t_{O N}=t_{O E}=\left(\boldsymbol{r}_{E} \bullet \boldsymbol{n}_{N}\right) / v_{N}\left(\boldsymbol{n}_{N}, c_{i j}, \rho\right)=(x \sin \theta \cos \phi+y \sin \theta \sin \phi+z \cos \theta) / v_{N}\left(\theta, \phi ; c_{i j}, \rho\right) \tag{1a,1b}
\end{equation*}
$$

$$
\begin{align*}
& \left(\begin{array}{c}
\frac{x}{t} \\
\frac{y}{t} \\
\frac{z}{t}
\end{array}\right)=\left(\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right) * v_{N}+\left(\begin{array}{ccc}
1-n_{x}^{2} & -n_{x} n_{y} & -n_{x} n_{z} \\
-n_{x} n_{y} & 1-n_{y}^{2} & -n_{y} n_{z} \\
-n_{x} n_{z} & -n_{y} n_{z} & 1-n_{z}^{2}
\end{array}\right)\left(\begin{array}{l}
\frac{\partial v_{N}}{\partial n_{x}} \\
\frac{\partial v_{N}}{\partial n_{y}} \\
\frac{\partial v_{N}}{\partial n_{z}}
\end{array}\right) ; \boldsymbol{n}_{N}=\left[\begin{array}{lll}
n_{x} & n_{y} n_{z}
\end{array}\right] \\
& \left(\frac{x}{t}\right)^{2}+\left(\frac{y}{t}\right)^{2}+\left(\frac{z}{t}\right)^{2}=v_{E}^{2}=v_{N}^{2}+\left(\frac{\partial_{N}}{\partial \theta}\right)^{2}+\left(\frac{1}{\sin \theta} \frac{\partial_{N}}{\partial \phi}\right)^{2}=v_{N}^{2}+\left(\sqrt{\left(\frac{\partial v_{N}}{\partial \theta}\right)^{2}+\left(\frac{1}{\sin \theta} \frac{\partial_{N}}{\partial \phi}\right)^{2}}\right)^{2} \tag{3}
\end{align*}
$$

Six regime rays are simulated for qP-, qSV- and qSH-modes, from origin to cross-diagonal between [ $x$ y z] $=\left[\begin{array}{lll}3 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}0 & 3 & 3\end{array}\right]$, for equi-angle stepped front-normals. This sampling shows changes from near-surface in-layers-dominant to deeper cross-layers and at-slant-encountered cracks. The displays are km-spatial, with progression SPEEDS made tangible through dot-density [40 intervals per second]; DENSE is slow and SPARSE is fast! The action per se is virtually on the energy flux loci from Origin to E shown in RED, but detail is visualized through regime ray segments; fine-dots red link the E-points. Front-normal $\mathbf{N}$-points and dotted regime rays are BLUE; fine-dots-blue link the N-points. The GREEN-framed R-E-N triangles are tangent plane portions anchored at $\mathbf{E}$, with pythagoras Right angle points linking to 2nd segments extended.


Fig.1: qP-mode REGIME RAYS
Schoenberg-Helbig orthorhrombic model Data for \# 2 \& \# 4 FS-rays
\# 2 directions time length velo
E[. 9627.2619.0674] 1. 000 2. 9670 2. 9670
N[. 9393. 3052.1564]. 4328 1.. 2775 2. 9516
Z[. $9511.3090 \quad 0 \quad] .4192$ 1. 2526 2. 9884
x[1.0000 0 0 ]. 1480 . 4652 3.1422
vTA=2. 9953 vRMS=2. 9959 vPM=2. 9966
lenPATH=2. 9953
$\mathrm{vN}=2.9516$
P[.9574.2757.0860] Polarization $\qquad$
\#4 directions time length velo
E[. 4817 . 5837. 1577] 1. 0002.91012 .9101
N[.5237.7208.4540] . 5832 1.6514 2. 8316
Z[.5878.8090 0 ] . 2874.9133 3.1780
y[ $\left.\begin{array}{ccc}0 & 1.0000 & 0\end{array}\right] .1294 .5083$ 3.9282
$\mathrm{vTA}=3.0730 \quad \mathrm{vRMS}=3.0944 \quad \mathrm{vPM}=3.1159$
lenPATH=3. 0730
vN=2. 8316
P[. 5010 . 8097. 3056] Polarization $\qquad$


Fig.2: qSV-mode REGIME RAYS
Schoenberg-Helbig orthorhrombic model

|  |  |  |
| :---: | :---: | :---: |
|  | directions tim |  |
| $8757.3485 .3342] 1.0001 .32431 .3243$ |  |  |
| 9393.3052.1564]. $95011 . .23461 .2$ |  |  |
| [ 0 . 3053.1564].0251.0952 3.7889 |  |  |
| $\begin{array}{lllllllll}0 & 0 & 1.000] .0248 ~ . ~\end{array} 2061$ 8. 3067 |  |  |
| A=1. 5359 vRMS $=1.9175$ vPM=2. 393 |  |  |
| enPATH=1.5359 |  |  |

P[-. 0652 -. 0838 . 9943] Polarization
\# 4 directions time length velo
E[. 3946 . 6566.6427] 1. 000 1. 51001.5100
N[.5237.7208.4540] . 7753 1.13771.4674
X[ $0 \quad .8462 .5329] .1176 .2025$ 1.7225
z[ $\begin{array}{rrrr}0 & 0 & 1.0000]\end{array}$. 1071. 3460 3. 2322
vTA=1. 6863 vRMS=1.7711 vPM=1. 8602
lenPATH=1. 6863
$\mathrm{vN}=1.4674$
P[-. 2033 -. 2331 . 9510] Polarization


Focus initially on Fig. 3 qSH-mode with its \#2 regime ray and the boxed data. E-rowed underlined data is for red-dotted energy flux locus, so-called group- or ray-(velocity) representation. \{N Z y \} is code for regime ray segment orientations, here N for 3 D front-normal, Z for in parallel to coordinate frame z -plane, and y for y -axis parallel. Segment 2 looks like a blur, but details the boundary of small z-plane rectangle with segment progressing diagonally; c.f. outlined plane areas for second segments of other regime rays. Note regime changed to $\{\mathrm{N} \mathrm{Z} \mathrm{x} \mathrm{\}}$ for \#4 regime ray, which through nearness of \#3 and \#4 energy flux loci suggests a 'flip-point', possibly even a cusping-like swerving. Attentive readers will notice and ponder the distinctly different regime rays patterns for the different modes; e.g. shear-modes horizontal/ vertical have second and third regime ray segments so-oriented. And remarkably FAST can manifest for third segments!

## Conclusions

Regime rays encapsulate and quantify the fine structured anisotropic medium heterogeneity encountered along wave disturbance energy-transport channels through their significant direction and propagation speed detail. Because that detail links to parameters of relevant elastic medium models, they will be important for seismic wave propagation-, and particularly for anisotropy velocity field- modeling, as also potentially for data to-medium-models inversing. I expect regime rays will bring anisotropy kinematics back into the FSray theory purview, however with minor refinement of its premises.

## References

Auld, B. A., 1973, Acoustic Fields and Waves in Solids, vol. I: John Wiley and Sons.
Cerveny, V. 2001, Seismic Ray Theory: Cambridge University Press.
Helbig, K., 1994, Foundations of Anisotropy for Exploration Seismics: Pergamon
Love, A.E.H., 1927, A Treatise on the Mathematical Theory of Elasticity: (1944 Dover republ. of $4^{\text {th }}$ ed. Cambridge U. Press ) Macbeth, C., 2002, Multi-Component VSP Analysis for Applied Seismic Anisotropy: Pergamon.
Mensch, T., Rasolofosaon, P., 1997, Elastic-wave velocities in anisotropic media ...: Geophysics Journal Internat, 128, 43-64. Rudzki, M.P., 1911, Parametrische Darstellung der elastischen Wellen in anisotropen Medien, Bulletin Academie Cracovie 503536 (Parametric representation of elastic waves in anisotropic media).
Schoenberg, M., Helbig, K., 1997, Orthorhombic media: Modeling elastic wave behavior in ... Geophysics, 62, 1954-1974.
Vetter, W. J., 1993, The Fermat path ... in anisotropic media: 63rd Annual Intern. Meeting, SEG, Expanded Abstract, 953-956.
Vetter, W. J., 2007, Anisotropy Kinematics Clarified though Regime Rays Model: 2007 CSPG CSEG Convention, 563-567.

