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Summary  
Scattering diagrams are a way of classifying and manipulating the non-linear terms of forward 
and inverse scattering, ultimately aiding in the derivation of new seismic processing algorithms. 
The eikonal approximation, a partial solution of the wave equation relevant to seismic 
processing, may be derived by manipulation of these diagrams.  In fact, the diagram derivation 
achieves its goal in an arguably less roundabout way than other, superficially more elegant, 
perturbation methods. 

Introduction 
The eikonal approximation is an expression for modeling scalar wave propagation (Morse & 
Feshbach, 1953), which, together with its relative the WKBJ approximation, is relevant to 
seismic exploration (e.g., Clayton & Stolt, 1981; Amundsen et al., 2005).  Non-linear scattering 
theory too is highly relevant to seismic exploration—inverse scattering diagram analysis has led 
to powerful algorithms for the removal of multiple reflections from seismic data, and is the 
subject of current research into processing and inversion of primaries (Weglein et al., 2003).  
Here we link the two, providing a simple derivation of the eikonal approximation from a 
scattering-diagram analysis of the Born series.  We compare it with the derivation of Morse and 
Feshbach, which is based on a truncation of the integral in the Lippmann-Schwinger equation. 

Consider two simple 1D media, an actual medium c(z) and a reference medium c0, in which 
actual and reference wavefields, G and G0 respectively, propagate, from a source depth zs to an 
observation depth zg.  G satisfies  

                                         

and G0 satisfies the same equation but with c0 replacing c(zg).  Scattering theory is an 
expression of actual media and fields as series expansions about reference media and fields.  
Defining α(z) = 1 – c0

2/c2(z), the Lippmann-Schwinger equation is 

                         

where k=ω/c0. The Born series then arises through back-substitution of this equation into itself: 

                             

where Gn is n’th order in α, for instance, at second order,                           

             

etc. Assuming convergence, summation of a large number of these terms produces an 
expression for the full wave field.  Each term contains propagations and interactions strung 
together in a chain.  For instance, G2 involves (reading right to left) reference propagation from 
zs to z’’, where an interaction of strength k2α occurs, then a further propagation from z’’ to z’, 
another interaction, and a final propagation from z’ to zg.  The term Gn involves n interactions 
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and n+1 propagations in the reference medium.  To discuss “scattering geometry” is to discuss 
the characteristic path in z that all or part of Gn takes during its n interactions. 

 

Scattering diagram derivation of the eikonal approximation 
Consider a source plane at zs embedded in a homogeneous 1D reference medium, above a 
measurement plane at depth zg, and assume the reference and actual media to agree at and 
above zs, but differ above and below zg.  In Fig. 1 some of the events of the resulting wave field 
are illustrated.  The eikonal approximation is an expression for component (A) in Fig. 1, which 
dominates when the medium is smooth.  The equations in the introduction reflect this 
arrangement if zs is above the depth support of α, and zg is below or within the perturbation. 

Scattering diagrams arise because of the absolute value operation within the reference Green’s 
function (De Santo, 1992): 

                                                   

When this is substituted into the Born series terms, and each term is broken up into cases 
based on the absolute values, each broken up bit has a characteristic scattering geometry.  For 
instance, G2 decomposes into four cases: (A) zg>z’, z’>z’’; (B) zg>z’, z’<z’’; (C) zg<z’, z’>z’’; and 
(D) zg<z’, z’<z’’.  These are represented by scattering diagrams (Fig. 2). 

Let us allow the geometry of these diagrams to suggest an approach for deriving certain types 
of wave solution.  We know that the eikonal approximation corresponds to the direct part of the 
wave; no reflections, or changes in direction with respect to the z axis occur as this part of the 
wave propagates.  So, let us see what happens if, instead of summing together all terms in the 
Born series, we reject from the summation any contribution whose diagram involves a change in 
direction (Fig. 2 B-D).   At first order, rejecting scattering interactions taking place below zg 
leaves a portion of the full wave field we call T1:  
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At second order (Fig. 2), 3 of the 4 contributing terms involve a change in reference propagation 
direction.  Our program retains only the remaining term, which we will call T2:                                             

    

Repeating this retention/rejection of scattering diagrams over several orders, a pattern is 
discerned; we use this pattern to collect such terms at all orders.  Calling the result T, we have  

             

This is recognizable as a Maclaurin series.  Summing it, we obtain 

                               

This is the eikonal approximation. 

Direct integration of the Lippmann-Schwinger equation 
We next consider an alternative derivation, that of Morse & Feshbach (1953).  Consider again 
the Lippmann-Schwinger equation, but this time altered, with the integration limit set to the 
measurement depth zg.  Again calling the field variable satisfying this new equation T, we have 

                            

By substituting G0 into this equation, multiplying through by exp(-ikzg), and taking the derivative 
with respect to zg, a differential equation is obtained: 

                         

This may be directly integrated: 

                                             

and—importantly for our later discussion—the constant C may be determined as follows. Setting 
zg=0, and considering zs to be slightly negative, so that α=0 between the integral limits, we have 
that T(zg,zs)|zg=0=C. If we further stipulate that the medium is too smooth to reflect any 
observable wave energy, such that the only contribution to T for this zg, zs pair is the direct 
wave, we may equate this to G0, and C becomes, under our choices, 

                                                        

at which point the eikonal approximation of the previous section is recovered. 

A comparison of the two derivations 
At first blush, since the diagram derivation appears to be “throwing away” much more of the 
wave field than do Morse & Feshbach, the equivalence of the above methods may seem 
strange. But in fact, the alteration of the integral limit in the first equation of the previous section 
rejects more of the field than one might expect.  In fact, that integral limiting step is alone 
equivalent to the alterations associated with the diagram approach; the determination of C is  
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completely superfluous, in that it brings no new information to the approximation.  Let us see 
that this is true. Beginning again with the altered Lippmann-Schwinger equation, rather than 
manipulating it as an integral equation, instead we expand it in series through back-substitution, 
just as if we were deriving the full Born series.  Taking care with the variable zg, we have: 

                      

Examination of this expansion in light of Fig. 2 clarifies that the alteration of the Lippmann-
Schwinger equation (as introduced by Morse and Feshbach) interrupts contributions to the wave 
field precisely where they would begin to incorporate scattering interactions that involve a 
change of propagation direction: the integral limitation is equivalent to the retention of direct 
diagrams.  Substituting G0 into the above expansion confirms that the Ti therein are identical to 
those in the sum on pg. 3.  

Conclusions 
The point of these derivations and their comparison is to highlight a benefit of the directness of 
the diagram approach.  Since their end results are the same, the two approaches appear to 
differ only procedurally. However, because in the truncated Lippmann-Schwinger integral 
approach the equation was differentiated, we were forced to additionally argue for the form of C.  
Since it is based on a series, the scattering diagram derivation lacks a certain expediency, but it 
clarifies that the original integral limitation alone is sufficient to obtain the eikonal approximation 
in that form.  In carrying out the older approach, we now see, it was necessary to at first throw 
away information critical to the solution, and later return it again by imposing what is in the 
grand scheme of things a redundant boundary condition.  With diagrams we were able to avoid 
this extra set of arguments. It is worth also emphasizing that making direct waves with a 
scattering-diagram approach can and has been generalized to multidimensional fields and 
perturbations (Innanen, 2009), while the truncated Lippmann-Schwinger approach seems to be 
fundamentally restricted to 1D media.  This beneficial directness is common to all diagram-
based scattering methods, in forward modeling, and also in inverse scattering seismic 
processing algorithms. 
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