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Summary 
We introduce least-square shot-profile wave-equation migration.  Least-squares migration uses 
a forward operator (de-migration), and an adjoint operator (migration).  We derive these 
operators using pre-stack split-step wave-field propagators, omitting some details for lack of 
space.  We apply shot-profile least-squares migration to a synthetic example using data from 
the Sigsbee 2a model. 

Introduction 
Previously, Rickett (2003) described algorithms for shot-profile split-step de-migration and 
migration using operator notation. We provide a more explicit algebraic derivation of the 
operators.  In the context of least-squares migration, these are, respectively, the adjoint and 
forward operators for the least-squares normal equations. The algorithm that solves the set of 
least-squares normal equations, we call least-squares shot-profile wave-equation migration. 

Least-squares migration has received ample attention in the geophysical literature. Keys and 
Weglein (1983) introduced a generalized linear inversion for the Born approximation, allowing 
for incomplete data and prior information. Their paper presents the first non-direct (i.e. least-
squares) solver for the Born approximation. Concurrently, authors discussed the Born 
approximation and its direct inverse solution using constant velocity Green’s functions (e.g. 
Cohen and Bleistein, 1979) and WKBJ Green’s functions (e.g. Clayton and Stolt, 1981). On a 
parallel tract, a succession of wave-field propagation techniques for migration developed, for 
example, allowing for migration velocity models that vary in depth only (Gazdag, 1978). A 
multitude of approximations allowing for laterally varying velocity models followed (e.g. Stoffa et 
al., 1990). With the privilege of hindsight, one may choose to take the perspective that these 
wave-field propagators are approximations to the Green’s function in the Born approximation 
(e.g. Huang et al., 1999). This is the perspective that we take in this study. 

In addition to the choice of propagator, one must choose a geometry for the seismic experiment, 
or equivalently the domain in which the migration algorithm operates. Within the regime of pre-
stack migration there are two geometries commonly used, shot-receiver and shot-profile. 
Although the equivalence between the two geometries has been shown (Biondi, 2003), they 
differ in their respective parameterizations of the pre-stack migrated image gathers. From a 
practitioner’s point of view, this difference in parameterization is important (Jeannot, 1988). 

The first widely cited practical implementation of the ideas introduced by Keys and Weglein 
(1983) is Nemeth et al. (1999) which uses Kirchoff operators to propagate the wave-field. Later, 
Kuhl and Sacchi (2003) used wave equation based propagators. In both cases, the algorithms 
can be classified of type shot-receiver. These implementations validate the ideas in Keys and 
Weglein (1983) that, for example, generalized inversion can compensate for incomplete data. 

Forward and adjoint operators 
In the context of least-squares migration, the forward operator is wave-field modeling (often 
referred to as de-migration). Our construction of the forward operator uses 1) the Born 
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approximation, 2) a constant velocity Green’s function, altered for laterally varying velocity using 
the split-step approximation, and 3) a Gazdag depth marching algorithm for depth varying 
velocity. 

For the Born approximation to the wave-field, we write 



   , where 
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  is the direct 

wave-field, 



     , (1) 

and the Born approximation for the scattered wave-field is 
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where, 



   , (3) 

is called the scattering potential (e.g. Keys and Weglein et al, 1983).  In equations 1-3, 



 and 



 are, respectively, lateral geophone and source positions, with 



 and 



 being their 

respective depths below the surface.  The function 



  is the Fourier representation of the 

seismic source, and 



 is a Green’s function.  Within the context of least-squares migration, 



 

(with a chosen parameterization) are migrated images, 



 is the Earth’s velocity, and 



 is the 

migration velocity.  We have assumed an acoustic and constant density wave equation. 

To evaluate equations 1 and 2 for when the migration velocity 



 varies in both its lateral and 

depth dimensions, we employ the wave-field propagator described in Gazdag (1978) along with 
the split-step approximation of Stoffa et al. (1990).  Figure 1 illustrates the propagator for the de-
migration operator.  The migration velocity is partitioned into layers, and within each layer the 
migration velocity is constant with respect to depth, but is allowed to vary in its lateral 
dimensions.  The contribution to the scattered wave-field from each layer is computed using 
equation 2 and a boundary condition computed for its top surface.  For the shallowest layer, the 
boundary condition is given by the location and frequency distribution of the seismic source.   
For deeper layers the boundary condition is computed using the direct wave-field (equation 1).  

The total measured (scattered) wave-field is 



 , where 



  is the contribution from the 



 

layer. 

For lack of space, we omit details of the derivation, giving only the final result for the forward 
operator.  In particular, the sum over 



  can be expressed using two iterative methods, first for 

downward continuing the source side wave-field into the earth, 



  

   
 (4) 

and, second, for constructing the measured wave-field, 


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 (5) 

for 



 , and 



   (



 are the number of layers in the migration velocity model).  In 

equations 4 and 5, 



  is the frequency distribution of the seismic source at lateral shot 

position 



.  Further, 
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 and 



 are, respectively, phase shift and split-step operators for the 
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

 layer that arise from the split-step approximation to the Green’s function.  



 is the Fourier 

transform over 



, 



  is layer thickness, and 



 is an average migration velocity for the 



 

layer. 

The adjoint operator (migration) can be found by re-writing the forward operator (equations 4 
and 5) in the form of a discretized Fredholm integral equation of the first kind which has a well 
known adjoint.  This, in turn, results in the often-used split-step shot-profile migration algorithm, 
and that for lack of space, we omit from our discussion. 

Shot-profile least-squares migration 
We let 



 be a vector realized from all recorded shot gathers 



  .  Likewise, we 

let 



 be a vector realized from the scattering potential 



  such that for each shot 

location, its aperture can vary.  Then, we let 



 be the matrix built from the de-migration 

operator defined by equations 4 and 5, and 



 its adjoint (migration operator).  



 maps 



 to 



, and to find optimal migrated images, we solve the set of least-squares normal equations, 



    (6) 

for 



.  In equation 6, 



 is a data weighting matrix allowing for incomplete data, and 



 is a 

trade-off parameter.  We solve equation 6 by the conjugate gradient method, and implicit 
construction of the matrices. 

Example 
For example, we consider the Sigsbee 2a model.  We use finite-difference data generated by 
the Madagascar project.  For this example, we use a single shot gather (not shown), illustrating 
the effectiveness of least-squares migration applied to a limited amount of data.  The result of 
applying the migration and least-squares migration algorithms to the single shot gather are 
shown (for a short window in depth), respectively, in Figures 2a and 2b.  In Figure 2c, we show 
the true scattering potential (akin to a reflectivity model). 

The example shows subtle improvements in the migrated image when shot-profile least-squares 
migration is used in place of shot-profile migration. For example, the point diffractors located at 
approximately 5.2km in depth are better resolved.  

Conclusions 
We derive a least-square shot-profile migration algorithm using a split-step wave-field 
propagator.  This differs from previously published shot-receiver least-squares migration 
algorithms, allowing for the (de-)migration operators to be applied one shot at a time, as well as 
giving an alternative parameterization of the migrated image gathers. 

 

Figure 1:  We give a schematic description of the first two terms in the series representation of 

the de-migration algorithm, where 



 is the split-step Green’s function for the 



 layer. 
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Figure 2:  Sigsbee 2a example, single shot: a) the migration (adjoint), b) the least-squares 
migration (inverse), and c) the true reflectivity. 
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