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Summary  

The total variation (TV) regularization method can be used to obtain solutions were edges and 
discontinuities are preserved. In this article, the TV method is applied to invert acoustic 
perturbations using the single-scattering Born modeling operator. The TV regularization 
imposes sparsity on the gradient of the model parameters. The latter leads to images of model 
parameters with preserved discontinuities and edges. Synthetic data examples are used to test 
the proposed seismic imaging algorithm. 

Introduction 

Geophysical inverse problems are mathematically ill-posed and, therefore, regularization 
methods are required to obtain stable and unique solutions. In addition, regularization methods 
serve to impose desired features on subsurface images. Quadratic regularization methods tend 
to produce models where discontinuities are blurred. On other hand, non-quadratic 
regularization methods such as TV can provide high-resolution images of the subsurface where 
edges and discontinuities are properly preserved. In this paper, the total variation (TV) 
regularization method (Rudin et al., 1992), a non-quadratic regularization technique, is 
considered. In particular, we investigate its application to the problem of estimating acoustic 
velocity perturbations using a single-scattering Born modeling operator. In a previous 
contribution, Youzwishen and Sacchi (2006) proposed edge preserving regularization methods 
that impose sparsity on vertical and horizontal model parameter derivatives. The present 
contribution uses TV and sparsity is imposed on the gradient of the model parameters. This 
permits to better capture edges that are not horizontally or vertically aligned.  

Theory and/or Method 

We represent seismic data by the vector  and the model parameters by the vector . In this 
case,  represents acoustic potential or velocity perturbation. Using the single-scattering Born 
modeling operator , the data can be obtained via the following expression 



   (1) 

We stress that  represents the measured scattered wavefields that consist of primary arrivals. 
The acoustic potential can be retrieved via minimizing the following cost  



  
v 
  (2) 

The first term is the l2 misfit norm. This term represents the error between observations and 
modeled data. The second term represents the regularization term. In this case, the 

regularization term is the l1 norm of the gradient of acoustic potential. The positive parameter  
is the regularization or trade-off parameter that determines the relative balance of the two terms 
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in expression (2). The minimization of equation (2) leads to solutions where 



v 
  is sparse. By 

promoting sparsity on 



v 
 , the acoustic potential becomes blocky.  

Practical aspects of TV minimization 

The l1 norm is non-differentiable at 0. Therefore, our numerical implementation uses the 
following expression to approximate the l1 norm of the gradient via the following differentiable 
functional  



     
 

(3) 

    

where  and  are the horizontal and the vertical discrete first order derivative operators with 
respect to  and  respectively. The parameter α α , is a stability parameter. The meaning 
and application of α will be discussed in the next section. 

The gradient of equation (3) with respect to  is given by 



    
v 


v 


v 


 
(4) 

Following Dibos and Koepfler (1999) and Vogel and Oman (1998), the solution to equation (4) is 
found using the lagged diffusivity fixed point method. The latter permits to linearize the non-
linear differential term of the right hand side of equation (4). The latter in turn leads to the 
solution in the following form 



    (5) 

The non-quadratic regularization leads to a non-linear system of equations that can be solved 
using iterative methods. For instance, one can adopt the iteratively reweighted least-squares 
(IRLS) method.  The IRLS method can be summarized with the following algorithm  

 







    
 (6) 

To gain efficiency the linear system of equations in (6) can be solved with the method of 
conjugate gradients. 

Examples 

Figure 1a shows the true velocity model that we will use to test the proposed TV imaging 
algorithm. The vertical velocity profile is piecewise continuous, thus it contains sharp edges. 
First, the synthetic seismic data are generated using the known velocity reference medium. This 
synthetic data are assumed to be the observed data. To make the problem more realistic, noise 
is added to the synthetic data. Figure 1b is the generated synthetic seismic data for a single 
source located at position (800 m, 0 m). Figures 1c and d are the solutions obtained using 
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quadratic regularization (least-squares with damping) and the total variation regularization 
method, respectively. It is evident that the TV regularization was able to recover the edges and 
discontinuities existing in the model.  

At this point, a few words about parameter selection are in order. The solution is controlled by 

two parameters:  and . The parameter  ensures that the TV functional term is continuously 

differentiable. The parameter  also controls the smoothness of the solution. When  is too 
large the TV norm behaves like a quadratic norm and therefore, the method retrieves smooth 

solutions. The parameter  is critical to find an optimal data fitting. In general  can be found via 
any goodness of fit criteria. For instance, we could use the L-curve method (Hansen, 1998) or 
the



 -test (Sacchi et al., 1998). 

 

 

 

Figure 1: (a) The true layer velocity model. (b) Synthetics data obtained from the single-
scattering Born approximation modeling method for a source location at 800 m from the origin. 
(c) Reconstructed solution using the damped least squares method. (d) Solution obtained using 
edge-preserving regularization implemented via the total variation (TV) method.  

 

Discussion and Summary 

The proposed imaging method uses TV regularization plus single-scattering Born modeling to 
retrieve a model of the subsurface with preserved edges and discontinuities. The TV norm is 
non-quadratic and therefore, the solution of the inverse problem requires the solution of a non-
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linear problem that requires solving a large inversion problem for a number of iterations. This 
make the problem computational intractable for large imaging pre-stack 3D problems. However, 
it appears that it is feasible to apply TV regularization to imaging problem that involved 2D pre-
stack seismic data. The method expands some of the work proposed in the area of least-
squares migration (Nemeth et al., 1999) and edge preserving imaging (Youzwishen and Sacchi, 
2006). 

It is clear that that TV should be used for problem that involve estimating background velocities 
as well. Our presentation is the first step toward the development of a non-linear inversion 
method that uses TV to constraint seismic velocities and not velocity perturbations.  
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