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Summary  

Minimum Entropy Deconvolution (MED) seeks to estimate a reflectivity series that consists of a small 
number of large spikes that can honor the seismic trace. We investigate a method to recover the 
reflectivity series based on nth-root entropy functions. This approach recovers comparatively small 
normalized reflectivity values and therefore, it attempts to diminish one of the shortcoming of the MED 
method. Synthetic data are used to test this family of entropy functions. 

Introduction 

MED is a deconvolution method proposed by Wiggins in 1978. The MED method belongs to the category 
of blind deconvolution methods as it attempts to recover simultaneously the seismic source wavelet and 
the seismic reflectivity. MED was an important attempt to bypass the classical minimum phase 
assumption made by spiking and predictive deconvolution techniques (Robinson and Treitel, 1980). 
Unfortunately, the MED technique tends to retrieve reflectivity sequences that are too sparse and 
therefore, it produces results with an unrealistic seismic character.  
 
One can propose a MED algorithm by maximizing a generalized entropy norm (Sacchi et al., 1994). A 
particular solution of the generalized entropy norm that depends on a particular choice of the entropy 
function was proposed by Wiggins (1978). However, there are different ways to define entropy norms by 
using different entropy functions. For example, logarithmic, quadratic and cubic entropy functions can be 
defined. The main problem with the entropy norms proposed so far is that they do not recover small 
amplitudes and they distort the relative amplitude of the reflection coefficients. In this work we present an 
nth-root family of entropy norms to attempt to overcome these limitations. 

The convolution model 

The seismic signal can be represented as the convolution of the reflectivity  and the wavelet ω. The 

seismogram can be represented as follows 

 (1) 

The purpose of the deconvolution is to recover the reflectivity  from the signal  without amplifying the 

noise . For that purpose, we need to estimate a linear operator  such that . We must stress 

that we will only estimate an approximation  to the desired filter, i.e.,  where , the residual 

wavelet, should be resemble a delta function. Applying  to both sides of equation 1 leads to the following 

expression      

 

                      
(2) 

Equation 2 shows that the linear operator must approximate  to  . In addition, the operator should not 

amplify the noise. The estimated reflectivity resembles the true reflectivity when the two aforementioned 
goals are attained. 

Entropy norms 

At the core of equation 2 is the estimation of the operator . Methods to estimate the deconvolution 
operator often assume a white reflectivity series and a minimum phase wavelet (Robinson and Treitel, 
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1980). In this article, we investigate the estimation of  via the MED method. Minimum entropy methods 
operate by defining and maximizing an entropy norm  that measures the simplicity of a time series 

(reflectivity) . In this work, a general form to measure simplicity is presented (Sacchi et 

al., 1994). The entropy norm is given by 

                     (3) 

with normalized amplitude variable is given by  

 (4) 

In equation (3),  is called the entropy function (De Vries and Berkhout, 1984). The latter must be a 

monotonic function of  to guarantee that  is a measure of simplicity or sparsity. Maximizing with 
respect to the operator coefficients leads  

 

 

(5) 

where  is the length of the filter. After a few algebraic steps, equation (5) reduces to the following 
expression  

. (6) 

Now expression (6) represents a shaping filter (Robinson and Treitel, 1980) that attempts to convert the 
seismic trace into a sparser version of itself ( ). The “deformation” of the seismic trace is given by  

 

 

(7) 

The original formulation of the MED proposed by Wiggin’s (1978) uses a varimax norm that entails 
choosing  In this case, the function  is proportional to the square of . To sum it all up, the 
original MED tries to shape the trace into a cubic version of itself. Other norms are possible as suggested 
in Sacchi et al. (1994). 

  

Entropy functional and sparseness 

The function  corresponds to Wiggins' entropy function. Logarithmic entropy function, on the 

other hand, is defined by .  One can use norms that accentuate sparsity via the following 

functions and   (quadratic and cubic entropy functions). However, the latter can lead 

to solutions where the relative reflection amplitude is not preserved. We investigate entropy functions (n-

root functions) given by: , ,  and  . The iterative solution of 

equation (6) (Wiggins, 1978) leads to the sparse sequence  that should resemble the seismic reflectivity. 
Figure 1 portrays the non-linearity that is imposed upon the seismic trace by MED (equation 7) for 
different entropy functions. The horizontal axis indicates all possible values of the reflection coefficients 
versus  for different entropy functions. Figure 2 illustrates the non-linearity for different  root entropy 

functions. Figure 1 shows that for values of ,  is close to zero for Wiggins’ entropy function and, 

for the quadratic and cubic entropy functions. This means that the algorithm will not be able recover small 
reflection coefficients. On the other hand, the logarithmic entropy function introduces an amplitude 
deformation including a polarity reversal. An ideal functional should have a linear behavior in order to do 
not introduce distortions in the relative strength of the reflection coefficients. However, such a function will 
not serve our purposes because the deformation is needed to “create” sparsity and therefore, to 
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transform the trace into a reflectivity series. The n-th root functions in Figure 2 show a close to linear 
behavior and consequently, one expects less amplitude distortion in the recovered reflectivity.  

  

Figure 1. Amplitude deformation imposed by the MED 
method for logarithmic and polynomial entropy functions.  

Figure 2. Amplitude deformation imposed by the MED 
method for different n-th root entropy functions. 

 

In figure 3 we illustrate a synthetic example where we compare deconvolution outputs obtained with 
different entropy functions. In every simulation the filter length and initial filter was kept unchanged in 
order to examine the behavior of the deconvolution exclusively with respect to the entropy function. The 
goal is to find a resolution compromise: reducing sparsity and the generation of high frequencies leads to 
better preservation of the relative strength of the reflection coefficients.  

The reflection strength is better preserved for the logarithm norm and for the n-th root function than for the 
polynomial functional. The visual differences are minimal; a careful examination, however, shows 
important differences. For instance, the distortion for the reflector at 0.2 seconds was computed by the 
evaluating the true estimated reflection coefficient amplitude ratio. The latter for the logarithmic norm and 
for the n-th root norm is about 80% whereas for Wiggins’ norm and for the cubic norm is about 50%.   

Discussion and summary  

We have investigated the influence of the entropy functional on the estimation of reflection coefficients via 
MED. This study confirms that entropy norms that are too sensitive to sparsity might not be ideal for 
seismic deconvolution, as they tend to introduce heavy distortions in the estimators of the reflection 
coefficients. On the other hand, entropy functions that are better adapted to estimate seismic reflectivity 
could be obtained by looking at the behavior of the non-linear transformation that maps data into high 
frequency data in the MED algorithm (equation 7). It is clear that this analysis can be used to find optimal 
norms to estimate the seismic reflectivity. The latter is the current focus of our research.    
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Figure 3. A simulation demonstrating the influence of the entropy function on the final estimation of the 
reflectivity. The reflectivity is indicated by , the seismogram by  The symbol  indicates the MED method 
with a logarithmic norm. The symbol  corresponds to Wiggins entropy function. The cubic entropy function 
is displayed with the symbol . The  root solution is given by  In short and were 
tested. 
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