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Summary 
Spectral decomposition is a time-frequency analysis tool widely used for seismic data 
interpretation. Compared to conventional frequency analysis, spectral decomposition attempts 
to estimate the frequency content of the seismic signal at any particular time.  This type of 
analysis has commonly been achieved using, for instance, the short window Fourier transform 
to determine the localized frequency content of the seismic signal.  An alternative method is 
proposed in which the seismic signal is deconvolved with a dictionary of different central 
frequency Ricker wavelets. This approach allows for different frequency components of the 
seismic signal to be accounted for with different Ricker wavelets.  By applying sparsity 
constraints, greater resolution is obtained in the time-frequency distribution since a minimal 
number of Ricker wavelets are required to fit the original seismic signal. 

Introduction 
The frequency content of a given time series (i.e. a seismic signal) is commonly found using the 
Fourier transform.  However, the frequency information obtained from this procedure relates to 
the entire time series and contains no information about local frequency variations.  Time-
frequency analysis, also known as spectral decomposition, attempts to obtain the local 
frequency content of the time series rather than the global frequency content that is obtained 
from the Fourier transform.  The local frequency map obtained via spectral decomposition has 
been employed in reservoir characterization to study thin beds (Partyka et al., 1999) and the low 
frequency shadows associated with hydrocarbons (Castagna et al., 2003).   

Time-frequency analysis has commonly been performed using short window discrete Fourier 
transforms (Partyka et al, 1999). In this type of time-frequency analysis, the reflectivity 
sequence, which represents the geological sequence, can no longer be considered white, or 
completely random.  Therefore, the spectral attributes seen in the amplitude spectrum of the 
short-window Fourier transform are a combination of the amplitude spectrums of the seismic 
wavelet and reflectivity sequence.  It is this interference attribute of the wavelet and reflectivity 
amplitude spectra that has been exploited in earlier time-frequency analysis exercises.  Various 
other approaches have also been developed for time-frequency analysis such as the continuous 
wavelet transform (Sinha et al., 2005), S-transform (Stockwell et al., 1996), and matching 
pursuit algorithms (Mallat and Zhang, 1993). 

This article proposes an alternative time-frequency analysis technique for seismic signals. We 
utilize a high-resolution sparsity promoting approach to retrieve a set of frequency dependent 
reflectivity series. The frequency content of the seismic signal at a given time is obtained from 
the set of Ricker wavelets that characterize that particular portion of the seismic signal.  
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Applying sparsity constraints to the deconvolution procedure enhances resolution of the time-
frequency analysis. 

Theory 
The convolutional model states that a seismic trace, s, is composed of the convolution of a 
wavelet, w, with the reflectivity sequence, r, of the Earth as seen in Equation 1.  This equation 
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can also be represented as the linear system of equations, s = Wr, where W represents the 
convolutional matrix of the wavelet.  Instead of viewing how one individual wavelet is 
represented in the seismic trace, we will study how multiple wavelets can be represented in the 
seismic trace.  Using a dictionary of different Ricker wavelets, which are uniquely defined by a 
central frequency (Ryan, 1994), the seismic trace can be decomposed into its different 
frequency components at a specific time through the employment of deconvolution.  If N 
different frequency Ricker wavelets comprise the Ricker wavelet dictionary, the seismic trace 
can be constructed from its frequency components by 
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where Wi and ri refer to the wavelet convolution matrix for the Ricker wavelet with central 
frequency fi, and its associated reflectivity sequence. The matrix D represents the dictionary of 
Ricker wavelets and, finally, m is used to represent the vector containing all the pseudo-
reflectivity sequences. Essentially, the seismic signal is decomposed into several traces that are 
uniquely determined from a singular Ricker wavelet and its related reflectivity structure.  The 
time-frequency analysis can then be obtained with the prior knowledge of the frequency content 
of the individual Ricker wavelets.  Thus, the seismic signal can be transformed into a time-
frequency map by deconvolving a Ricker wavelet dictionary from the seismic signal to obtain a 
pseudo-frequency dependent reflectivity structure that can be portrayed as a time-frequency 
map.   

To increase resolution in the time-frequency map, sparsity constraints are applied during the 
deconvolution process.  By imposing that the solution, or pseudo-frequency reflectivity structure, 
be sparse, a minimal amount of Ricker wavelets will be required to represent the seismic signal.  
This in turn will make the pseudo-frequency reflectivity structure and thus, the time-frequency 
map have a greater resolution.  The sparsity constraints are imposed by considering a mixed 
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l 1 norm problem, as the 
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l 1 regularization term constrains the solution to be sparse.  The 
resulting cost function to be minimized is given by 
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where 



  is the regularization parameter that controls the amount of sparseness desired in the 
solution. 

The mixed 
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l 1 norm problem was solved using two different techniques, IRLS (Daubechies, 
2009) and FISTA (Beck and Teboulle, 2009).  The iteratively reweighted least squares method, 
or IRLS, solves the cost function in a similar way that the regularized least squares method 
solves the 
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l 2 norm problem and is described by Equation 4 where the matrix Q implicitly  
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depends upon the original model mk.  The conjugate gradient method was employed to make 
this algorithm more efficient.  The fast iterative shrinkage-thresholding algorithm, or FISTA, is 
based upon the idea of iteratively solving simpler cost functions that are always greater than the 
original, complex cost function using a soft-thresholding operator.  This method can be 
described using Equation 5 where α is a constant that must be greater than or equal to the  
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maximum eigen value of DTD and hk is a clever update of the model estimate mk. 

Examples 
A synthetic seismogram was created with a 15 Hz Ricker wavelet at 0.1s, a 30 Hz Ricker 
wavelet at 0.2s, a 45 Hz Ricker wavelet at 0.3s, 60 Hz and 45 Hz Ricker wavelets around 0.4s, 
and 15 Hz, 45 Hz and 60 Hz Ricker wavelets around 0.5s.  This synthetic seismogram and the 
time-frequency analysis obtained from the non-sparse regularized least squares solution, the 
IRLS solution, and the FISTA solution are displayed in Figure 1.  As can be seen, by imposing 
sparsity constraints during the deconvolution procedure increased resolution in the time-
frequency map was achieved.  This increased resolution made it more apparent that there were 
separate events that were located around 0.4s and 0.5s.  The results obtained from the IRLS 
and FISTA methods are also comparable to one another for roughly equal run times.  The 
synthetic seismogram created for Figure 1 was also contaminated with 5% noise and the 
resulting time-frequency analysis is depicted in Figure 2.  The results of this exercise are still 
quite similar to the non-noisy case. 

We have applied the proposed method to 3D seismic data from central China.  Figures 3 and 4 
show a seismic amplitude cross-section and its high-resolution spectral decomposition from this 
data set.  Only the positive amplitudes are displayed for the high-resolution spectral 
decomposition, which is shown in an RGB display of three identified frequency bands.  The red 
arrow in these figures represents the base of a sand zone and is displayed as a time slice of the 
amplitude and high-resolution spectral decomposition volumes in Figures 5 and 6, respectively.  
Based on the limited well information, gas existence is correlates more with low frequency 
signatures rather than seismic amplitudes. There could be several reasons that the gas 
production relates to a low frequency signature (Castagna et al., 2003) such as the gas, under 
in situ conditions, has decreased the seismic velocity, which increases the time-thickness of the 
zone of interest.  Tuning effects on the seismic signal would thus change, causing the lower 
frequency signature.  

Conclusion 
An alternative method for time-frequency analysis was proposed by deconvolving a Ricker 
wavelet dictionary from a seismic signal.  By imposing sparsity constraints, the proposed time-
frequency analysis method produced a higher resolution image.  Due to the more complicated 
nature of solving the deconvolution problem with sparsity constraints, two sparse solving 
methods, IRLS and FISTA, were suggested and produced similar results. Testing on a field data 
set showed the high resolution spectral decomposition provides a good correlation between the 
low frequency amplitude and gas production.  
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Figure 1: Synthetic example without noise; (a) synthetic 
seismic signal; (b) non-sparse solution;  (c) IRLS 
solution; (d) FISTA solution 

 

Figure 2: Synthetic example with noise; (a) synthetic 
seismic signal; (b) non-sparse solution; (c) IRLS solution; 
(d) FISTA solution 

  

  

Figure 3: Seismic amplitude cross-section for central 
China data.  Red arrow corresponds to the base of a 
sand zone at a producing well near line 670.  

Figure 4: RGB display of the high-resolution spectral 
decomposition of Figure 3 with red/green/blue showing 
the frequency bands 10-21, 22-28 and 28-40 Hz, 
respectively. 
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Figure 5:  Amplitude time slice at base of sand zone 
shown in Figure 3.  There are four wells in the area, two 
dry (open circles) and two gas (red filled circles).  

Figure 6: Time slice of high-resolution spectral 
decomposition at the zone of interest. The production 
correlates quite well with low frequency signatures (red) 
as opposed to the seismic amplitudes of Figure 5. 

 

 


