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Summary 
The paper presents a numerical inversion method for estimation of Q-factor and phase velocity 
in viscoelastic media using recovery of relaxation spectrum from measured or computed 
complex velocity or complex modulus of the medium. Mathematically the problem is formulated 
as an inverse problem for reconstruction of spectral measure in the Stieltjes representation of 

the complex modulus using rational ( ],[ qp -Padé) approximation. The approximation is obtained 

by solving a constrained least squares minimization problem with regularization. The recovered 
stress-strain relaxation spectrum is applied to numerical calculation of frequency dependent Q-
factor and frequency dependent phase velocity for a standard linear viscoelastic solid (Zener) 
model as well as a nearly constant-Q model which has a continuous spectrum. Numerical 
results show good agreement between theoretical and predicted values and demonstrate the 
validity of the algorithm. The method can be used for evaluating relaxation mechanisms in 
seismic wavefield simulation of viscoelastic media. The constructed lower order Padé 
approximation can be used for determination of the internal memory variables in time-domain 
finite difference (TDFD) numerical simulation of viscoelastic wave propagation.  

Introduction 
The inversion method of Padé approximation is based on a constrained least squares 
minimization algorithm, regularized by the constraints derived from the analytic Stieltjes integral  
representation of the complex modulus. Solution of the constrained minimization problem 
provides coefficients of a rational approximation to the spectral measure of the medium. This 
rational approximation is transformed into Padé approximation by partial fraction decomposition. 
The method can use as data the values of measured, or simulated complex modulus or 

complex velocity in certain interval of frequencies. The recovered lower order ],[ qp -Padé 

approximation can be used for determination of the internal memory variables in TDFD 
numerical simulation of viscoelastic wave propagation. The developed technique together with 
finite difference modeling may eventually lead to a new simultaneous inversion technique for 
estimation of the frequency dependent complex velocities, Q-factors and phase velocities in 
anelastic attenuating media from vertical seismic profile (VSP) data in geophysics prospecting.  
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Q-factor modeling and rational approximation for inversion 
We consider a plane compressional wave propagating in a homogeneous isotropic viscoelastic  
medium with constant material properties. The equation of motion and the relation between 
stress and strain for one-dimensional (1D) linear viscoelastic media are represented by 
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where  is the mass density, ),( txu  is the displacement, )(t  is the relaxation function of the 

medium. In the frequency domain, the relation  between stress and strain  in a linear 

viscoelastic medium and the Q-factor can be formulated as  

                          )()()(  M ,   ))(tan(/1)(Im/)(Re)(   MMQ  

where )(M is the complex viscoelastic modulus,   is the phase of .M The complex velocity 

)(V  and the phase velocity )(c  in an attenuating medium are given by (Carcione, 2007): 

                            /)()( MV  ,    )(/Re)(/1  Mc   

respectively. )(M is uniquely determined by a given )(Q  in a causal medium since MRe  

and MIm must obey a Kramers-Kronig relation.  In seismic applications, )(Q  is normally 

assumed to be frequency-independent or only slowly varying with frequency. The information 
about the relaxation spectrum of the medium is contained in the spectral measure ( )x in the 

analytic Stieltjes integral representation of the complex modulus (Day & Minster, 1984): 
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Here 1i , UM is the unrelaxed modulus and M is the relaxation of the modulus. The 

function )(sG  is analytic outside the negative real semi axis in the complex s-plane, all its 

singular points are in the interval )0,( . The function( )x can be approximated by a step 

function with a finite number of steps, so that 
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Thus, the approximation  ( )G s  of the function G s( )  is given by  
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Here sn  is the n-th simple pole on the negative real semi axis with positive residue An , q is the 

total number of poles. The approximation of the complex modulus )(M  is obtained as 
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Therefore, the Q-factor and V ( )  can be estimated in terms of An and sn  as  
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Then the phase velocity can be estimated as c V c( ) / Re ( )  1 . A new numerical inversion 
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algorithm for reconstruction of the measure( )x is developed using constrained ],[ qp -Padé 

approximation (Baker, 1996) of  ( )G s  and its partial fraction decomposition. The approximation 

has the form ofG s G s a s b sp q( )  ( ) ( ) / ( )  , qp  ; p , q are the orders of real polynomials 

a sp ( )  and b sq ( ) , respectively. We assume that the complex velocity V ( )  or complex modulus 

)(M  can be measured at sample data point of frequencies k ),,2,1( Nk   where N is the 

total number of data points. Measurements V k( ) or )( kM  can be transformed to G zk( )  in 

the complex s -plane, kk iz  , corresponding to each sample frequency. Thus we have data 

pairs ),( kk dz , )( kk zGd  . The unknown coefficients of a sp ( )  and b sq ( )  are determined by 

solving the linear system of equations: gSc  . Here the vector c contains all normalized 

coefficients of a sp ( )  and b sq ( ) ,  IR iggg   and IR iSSS  , subindices R and I indicating 

the real and imaginary parts of the matrices with entries in terms of data. The reconstruction 
problem of determining the coefficient vector c is an inverse problem; it is ill-posed. To derive a 

stable numerical inversion algorithm, a penalization term was introduced in the Tikhonov 
regularization functional (Tikhonov et al., 1977) and the reconstruction problem is formulated as 

the constrained least squares minimization problem with the regularization parameter  0  

chosen properly (Zhang & Cherkaev, 2009; Zhang & Lamoureux et al., 2009): 
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After recovery of the coefficient vector c of the rational function approximation  ( )G s , its 

decomposition into partial fractions, gives ],[ qp -Padé approximation of G s( ) . Then the Q-

factor and phase velocity can be calculated using the above derived formulas. 

Results 
In the first example we consider inverse modeling of Q-factor for a standard linear solid (SLS)  
(Generalized Zener) model. The values of material strain-stress relaxation times were chosen 

from (Tal-Ezer et al., 1990) to calculate the synthetic complex modulus )(M with five relaxation 

mechanisms to yield a constant 100Q  at 50 data points (frequency range: 2~50Hz),  =2000 

kg/m3 and 8 MMM UR  Gpa. The function G s( )  in this analytic model has a five-term 

partial fractions form. An  and snare reconstructed almost exactly in the case of 5q  when 

there is no noise in the data. The recovered poles and residues are further used to covert the 
values of the strain-stress relaxation times with the number of relaxation mechanisms being less 

than five using the low order ],[ qp -Padé approximant method for evaluating Q-factor and 

phase velocity. Fig. 1 illustrates the numerical results for sensitivity analysis of the estimated Q-
factors and phase velocities using data with added noise. The results agree with the published 
simulations in (Tal-Ezer et al., 1990). To further examine the effectiveness of the developed 

inversion method we consider a nearly constant 21Q  model with a continuous relaxation 

spectrum. The complex velocity measurements were simulated at 50 data points (frequency 
range: 0.01~100Hz). Fig. 2 shows the estimation of Q-factors and phase velocities using Padé 

approximation for 4q  and 5q .  

Conclusions 
A new numerical inversion method for estimation of Q-factor and phase velocity in 
homogeneous dissipating media was developed using Padé approximation. The inverse 
problem was solved as a constrained least squares minimization problem with regularization 
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constraints provided by the Stieltjes integral representation of the complex modulus. The 
method was tested using analytical models of viscoelastic media with a continuous spectrum as 
well as a standard linear solid (Zener) model. The numerical results demonstrate the 
effectiveness of the developed approach. The method can be used for identification of 
relaxation parameters of viscoelastic materials from measurements of complex velocity or 
complex modulus. The recovered relaxation mechanisms can be used for numerical modeling of 
seismic wavefields in viscoelastic media.  
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Fig. 1 True and computed Q-factor (left) and phase velocity (right) for data with 1.0%, 1.5% and 2.5% noise for the 
standard linear solid (Zener) model (q  = 5 in the inversion algorithm). 

                                      
 
Fig. 2 Calculation of  Q-factors (left) and phase velocity (right) for nearly constant Q =21 model with a continuous 
spectral measure using different orders of Padé approximation.   


