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Summary 
Pathfinder minerals provide a wider indication of the presence of a mineralizing system. Several 
are used in exploration for the unconformity-type uranium deposits of the Athabasca Basin 
(northern Saskatchewan and Alberta) as mineralogical host-rock alteration haloes occur at sites 
of mineralized basement-sandstone interaction. These haloes typically include clay mineral 
alteration features, including ubiquitous illitization. Because of this, illite has been the most 
utilized pathfinder mineral in unconformity-type uranium exploration.  

In the early 1980s, based on basic optical petrography, lithogeochemistry, and XRD methods, it 
was postulated that the presence of illite was a direct consequence of the geological 
environment present during diagenesis and during the mineralization and host-rock alteration 
formation event(s). Subsequent work using additional methods, like SWIR reflectance 
spectrometry, EMP, SEM, and illite polytype analyses, carried out to examine the characteristics 
of Athabasca illite on the macro- and micro-scale, has confirmed that the presence of illite was a 
direct consequence of the geological environment present at these times. Thus, illite has been 
reaffirmed/refined as a pathfinder mineral for Athabasca unconformity-type uranium deposits. 

Introduction 
Pathfinder minerals are those minerals that are diagnostic indicators of the mineralizing system 
under investigation. The unconformity-type uranium deposits of the Athabasca Basin display a 
suite of host-rock alteration minerals genetically related to the uranium mineralization system. 
Acid-base reactions resulted in the formation of mineralogical host-rock alteration haloes at sites 
of basement-sandstone interaction. 
The haloes typically include clay 
mineral alteration features, primarily 
illitization. Because illite is a ubiquitous 
alteration feature present around both 
sandstone- and basement-hosted 
deposits, it has been, and is, the most 
utilized pathfinder mineral in 
unconformity-type uranium exploration.  

Geological Setting 
The Early Proterozoic Athabasca Basin 
is an intracratonic (sensu lato) 
sandstone basin located in northern 
Saskatchewan and Alberta (Figure 1). 
It covers an area of ~100,000 km2 and 
is undeformed except by faulting and 
by the Carswell meteorite impact 
structure. It unconformably overlies a 
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Figure 1: Location of the Athabasca 
Basin. 
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crystalline basement complex comprising highly-deformed, medium- to high-grade metamorphic 
Archean granitoid gneisses, Paleoproterozoic metasediments, and Hudsonian intrusives, 
belonging to the west-central part of the Canadian Shield. The present Athabasca Group 
sandstone cover ranges from 0 to ~1500 m in thickness and is dominantly composed of mature 
coarse-grained quartz arenite with a kaolin-illite clay ± hematite matrix.  

The Athabasca unconformity-type deposits are located around the unconformity between the 
Athabasca Group and underlying Archean to early Proterozoic metamorphic basement.  They 
are localized at fault intersections, associated with breccia zones, and are within clay mineral 
and silicification/desilicification host-rock alteration haloes. Unconformity mineralization can be 
found up to 40 m above and/or below the unconformity, while basement-hosted mineralization 
can occur up to several hundred metres below the unconformity. High-grade mineralization 
consists of massive to botyroidal pitchblende/uraninite replacements, veins, and impregnations, 
with widely varying amounts of Ni-Co-Fe arsenides, sulpharsenides, and sulphides.  

The host-rock alteration haloes 
contain illite, sudoitic chlorite, 
dravite, kaolinite, silicification 
(euhedral quartz) or 
desilicification, and locally, Ni-
Co-As-Cu sulfide minerals 
(Figure 2). They are up to 400 m 
wide at the basal unconformity, 
can be over a thousand metres in 
strike length, and extend several 
hundred metres above major 
deposits (e.g. McArthur River, 
Shea Creek, Cigar Lake). This 
alteration typically envelops the 
main ore-controlling structures, 
forming plume-shaped or 
flattened elongate bell-shaped 
halos that taper gradually upward 
from the base of the sandstone 
and narrow sharply downward 
into the basement. 

Illite as a pathfinder mineral 
In the early 1980s, it was postulated that the presence of illite was a direct consequence of the 
geological environment present during diagenesis and during the mineralization and host-rock 
alteration formation event(s). There are diagenetic lithostratigraphic variations in the illite 
proportion in the Athabasca sandstone (Figure 3), as well as distinctive illitic clay mineral 
alteration haloes around the uranium deposits, due respectively to lithologically- and 
hydrothermally-available potassium in the surrounding brine. The quantities and/or 
characteristics of pathfinder alteration minerals vary with proximity to mineralization. For illite, 
the absolute and relative quantities increase toward mineralization, with concurrent illite 
mineralogical and chemical compositional changes being related to deposit genesis. It was 
beginning to be understood that diagenetic-hydrothermal alteration illite contrasts with 
diagenetic illite in a variety of features, such as grain size, polytype, morphology, crystallinity, 
and mineral chemical composition. At that time, optical petrography, lithogeochemistry, and 
XRD methods were used in mineral exploration to determine the absolute amounts of the clay 
minerals, the absolute quantities and relative proportions of illite, and some basic recognition 

Figure 2: Egress-type host-rock alteration 
halo. 
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features of illite (broad-scale 
composition and crystallinity 
variations (Figure 4); rarely 
polytypes) of the alteration illite 
relative to the diagenetic 
background.  

During the 1990s, SWIR 
reflectance spectrometry was 
added to the analytical tool box to 
provide field-sourced clay mineral 
proportion data and EMP 
analyses were also providing 
some advances in the 
understanding of the mineral 
chemistry of the diagenetic and 
alteration clay mineral suite. But, 
illite polytype analyses were still 
only rarely performed. In the later 
1990s and in the 2000s, research 
work has focussed on the illite 
polytypes. SEM (and optical 
petrographic) work have provided 
corroborating evidence for the 
differences between the coarse-
grained, platy, and lath-like 1Mc 
diagenetic illite polytype and the 
fine-grained, “hairy”, wispy 1Mt 
hydrothermal illite polytype 
(Figure 5).  Similarly, detailed 
EMP mineral chemical work has 
provided thermodynamic 
constraints on the formation of 1Mt 
illite and has demonstrated the 
small, but consistent, increase in 
Al content of 1Mt hydrothermal 
illite relative to 1Mc diagenetic 
illite.  

Conclusions 
The determination of the basic 
thermodynamic constraints of 1Mt 
illite relative to 1Mc illite, of 
1Mt:1Mc proportions by XRD, and 
detailed SEM imaging of the 
transitions from background 
sandstone with diagenetic 1Mc 
illite to host-rock altered material 
with hydrothermal 1Mt illite, have 
provided micro-scale views of the 
illitic alteration phenomena. These 
developments have confirmed that 
the presence of illite was a direct 
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consequence of the geological environment present during diagenesis and the host-rock 
alteration formation event(s). Thus, the recent advances in mineralogical analysis have 
reaffirmed illite as a pathfinder mineral for Athabasca unconformity-type uranium deposits.  
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Figure 5: SEM: images of 1Mc and 1Mt illite polytypes. 


