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Summary 

We introduce a fast and efficient method for the interpolation of nonstationary seismic data. The method 

uses the fast generalized Fourier transform FGFT to identify the space-wavenumber evolution of 

nonstationary spatial signals at each temporal frequency. The nonredundant nature of FGFT renders a big 

computational advantage to this interpolation method. A least-squares fitting scheme is used next to retrieve 

the optimal FGFT coefficients representative of the ideal interpolated data. For randomly sampled data on a 

regular grid, we seek a sparse representation of FGFT coefficients to retrieve the missing samples. In 

addition, to interpolate the regularly sampled seismic data at a given frequency, we use a mask function 

derived from the FGFT coefficients of the low frequencies. Synthetic and real data examples can be used to 

examine the performance of the method. 

Introduction 

The problems of seismic data reconstruction and interpolation have attained a special stature in the seismic 

data processing community in recent years. Reconstruction methods use available seismic traces, measured 

on irregular and/or coarsely sampled grids in space, to estimate data on a regularly and sufficiently sampled 

grid. An effective solution can open the door to the application of multidimensional wave-equation imaging 

and demultipling algorithms, without having had to acquire the data sets with the completeness these 

methods demand. In a useful method of interpolation/reconstruction, we look for speed, stability in the 

presence of noise and aliasing, and the ability to manage complex events. In this paper, we propose an 

interpolation/reconstruction methodology that provides a constructive mixture of the above properties, and 

can be used for interpolation of nonstationary seismic events 

In seismic data processing, nonstationarity means that the frequency/wavenumber content of the signal 

varies in time/space. For instance, an absorptive medium causes nonstationarity in the time dimension by 

making the frequency content of a seismic pulse a function of path length. In addition, seismic sections that 

contain hyperbolic and parabolic or any nonlinear events produce nonstationary spatial signals in the 

frequency-space f-x domain at a given frequency. Interpolation/reconstruction methods typically cope with 

nonstationary signals through spatial windowing. Inside sufficiently small spatial windows, nonlinear 

seismic events appear linear or stationary. Hence, methods that assume stationarity, such as those 

referenced above, might be applied. 

The S-transform (Stockwell et al., 1996) is a type of short-time Fourier transform in which the window 

size is frequency dependent. The S-transform can be effectively utilized for the analysis of nonstationary 

data. Recent work on the S-transform has led to a fast, nonredundant algorithm (Brown et al., 2010), 
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renewing the possibility of developing an efficient and effective interpolation/ reconstruction approach 

based on S-transform theory. In this paper, we develop such an approach and examine its behavior when 

applied to synthetic and field data sets. Because the transform algorithm is new, we will first describe a 

straightforward and intuitive frequency-domain computation of the fast generalized Fourier transform 

(FGFT). We will then combine the FGFT with a least-squares fitting principle to formulate our FGFT 

interpolation method. Synthetic and field data examples are examined. 

Fast Generalized Fourier Transform 

The details of FGFT can be found in Brown et. al. (2010) and Naghizadeh and Innanen (2011). The FGFT is 

considered as a non-redundant S-transform. Figure 1 illustrates schematically an application of the FGFT 

algorithm. Figure 1a represents a time signal containing 16 samples. A fast Fourier transform is applied to 

the time signal to obtain the frequency-domain representation illustrated in Figure 1b. In the frequency 

domain, the signal is dyadically segmented (dashed boxes), and within each segment inverse Fourier 

transforms are applied to the data. The output is illustrated in Figure 1c. Each individual inverse Fourier 

transform is represented by a particular symbol in Figure 1c (square, diamond, triangle, circle). Next, to 

represent properly the time-frequency behavior of the data, the underbraced FGFT coefficients must be 

arrayed in a 2D plot. Figure 1d illustrates this arrangement of FGFT coefficients. Each element of a given 

inverse Fourier transform is distinguished from the others in that group via size. Hence each FGFT 

coefficient is uniquely represented by a symbol type and size. Figure 1d illustrates how these outputs are 

distributed. We note that there is better time resolution in the high frequencies and better frequency 

resolution in the low frequencies. 

 

 

 

 

Figure 1: Graphic representation of implementing FGFT. a) 

Original signal with 16 time samples. b) Fourier transform of 

original data in a. c) The FGFT representation of data after 

applying inverse Fourier transform on each dashed box of 

data in b. d) The time-frequency interpretation of FGFT 

coefficients in c only for positive frequencies. 

 Figure 2: a) Original chirp signal. b) The FGFT coefficients of 

(a). c) A 2D plot of FGFT coefficients clearly showing the 

time-frequency distribution of the chirp signal. d) The 

recovered chirp signal by applying inverse FGFT on b. 



 

 

  
Recovery – 2011 CSPG CSEG CWLS Convention 3 

Figure 2a shows the a chirp function. Figure 2b shows the FGFT of Figure 2a. Figure 2c illustrates the 2D 

array of FGFT coefficients after proper upscaling, i.e., the time-frequency decomposition of the chirp. 

Because the original chirp input is real, we include only the positive frequencies for this example. The 

FGFT evidently captures the nonstationary nature of the chirp function. The low frequencies predominate at 

the beginning of the signal and high frequencies predominate at the end. Figure 2d illustrates the adjoint 

FGFT acting on the FGFT coefficients of the chirp function. The adjoint FGFT recovers the original data 

within a small error level produced by the windowing step. 

FGFT interpolation of seismic data 

The interpolation problem is underdetermined, and hence to solve it we require some prior information. To 

provide this, let us consider the FGFT coefficients g of the desired, fully sampled signal. These must be 

related to d by 

 
[1] 

where G represents the forward FGFT operator. The adjoint FGFT operator G can furthermore be used to 

express the desired interpolated data d in terms of g as follows: 

 
[2] 

where we have introduced a diagonal weight function W that preserves a subset of FGFT coefficients. The 

desired data d is related to observed data by sampling function T  

 
[3] 

The system of equations in equation 3 is underdetermined , and therefore it admits an infinite number of 

solutions. A stable and unique solution can be found by minimizing the following cost function  

 
[4] 

where the cost function J is minimized using the method of conjugate gradients. 

For FGFT interpolation of regularly sampled seismic data, the following steps are in order: 

1. Transform the original data from the times-pace (t-x) to the f-x domain. 

2 Compute the FGFT of the data at a given frequency d(f) along all spatial axes, to obtain g(f). 

3 Create the weight function W(f) with one for coefficients larger than a threshold value and zero elsewhere. 

4 For the frequency f'=2f, interleave zero values between available spatial samples to obtain ddec(f'). 

5 Upscale the weight function W(f) to fit the size of ddec(f') and create the new weight functionW'(f'). The 

upscaling operator is a simple nearest-neighbor interpolation scheme. 

6 Use equation 4 to reconstruct the missing samples of ddec(f') . 

7 Repeat steps 2-6 for all frequencies. 

8 Transform the reconstructed f-x data to the t-x domain. 

Example 

To exemplify the procedure, in Figure 3a we illustrate a synthetic seismic section composed of three 

hyperbolic events with 81 traces. Next we decimate the original data to obtain the decimated seismic section 

in Figure 3b with 41 traces. The FGFT interpolation of the decimated data is shown in Figure 3c. Figures 

3d-f represents the f-k panels of data in Figure 11a-c, respectively. This underscores an important property 

of the FGFT interpolation method, which is the ability to cope with severely aliased energy in interpolating 

the decimated data. The f-k spectra of the interpolated data contain some artifacts because of the 

compromise made in the FGFT method to gain speed instead of resolution. 
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Figure 3: a) Original synthetic seismic section with three hyperbolic events. b) The seismic section after decimating every other trace. c) 

Reconstructed data using the FGFT interpolation method. d–f) The f-k representations of (a) through (c). 

Conclusions 

The FGFT is a fast and efficient way of analyzing nonstationary signals and identifying their time-

frequency evolution. We use the FGFT inside a least-squares fitting algorithm to interpolate nonstationary 

seismic data. The method has the ability to cope with rapid and local changes of dip information in the 

seismic data. For regularly sampled data, the FGFT interpolation method uses the low-frequency portion of 

data for beyond-alias reconstruction of the high frequencies. The proposed method is very fast and less 

demanding on computational memory compared to the alternative methods.  
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