
 

 

  
Recovery – 2011 CSPG CSEG CWLS Convention 1 

Blind L1-norm Multichannel Deconvolution for Seismic Source Function Estimation 

 
Jaime Meléndez Martínez* 

University of Alberta, Edmonton, Alberta, Canada 

melendez@ualberta.ca 

 

 

Summary  

In this work, similar to that proposed by Canadas (2002), synthetic data were used to analyze a blind 

deconvolution method to estimate source wavelets, which consists in alternating with single-channel 

reflectivity estimation, and multichannel wavelet estimation. The method is able to estimate the correct 

source wavelet under a wide range of conditions such as sparsity in the reflectivity series and band-width in 

the wavelet, and noise in the traces without making any a priori assumption of its phase. 

 

Introduction 

A seismic signal ts can be represented as  

   

where * means convolution, tw is the seismic wavelet, tq  is the reflectivity and tn  is the additive noise. The 

goal of deconvolution is, given ts , to recover either tq or tw . 

Conventional deconvolution methods depends on the previous knowledge of the properties of both 

reflectivity and wavelet; however, in this case we will not assum a previous knowledge about the wavelet 

phase (blind deconvolution). 

Theory  

Estimation of the wavelet given the reflectivity 

Estimation of the wavelet when the reflectivity is known reduces to a multi-channel damped least-squares 

solution with quadratic regularization. The cost function from equation (1) is given by 

 

Where µ is the damping parameter and j is the number of traces. Minimizing equation (2) with respect to the 

unknown wavelet and equating it to zero we have that 

 

where 
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is the average autocorrelation matrix of the reflectivities, and 

 

is the average cross-correlation vector of the traces with the reflectivities. 

 

Estimation of the reflectivity given the wavelet 

Estimation of the reflectivity when the wavelet is known involves defining as many cost functions as traces. 

Thus, from equation (1) we have that 

 

In order to recover a sparse reflectivity sequence, the non-quadratic regularization term 

and the associate hyperparameter β have been introduced in the cost functions. 

is known as the 1L -norm of q and has been studied by different authors (Taylor et. al., 1979; 

Levy and Fullegar, 1981; Oldenburg et. al., 1983; Santosa and Symes 1984). Minimizing equation (6) with 

respect to the unknown wavelet and equating it to zero we have that 

 

where 

 

being ε an stabilization term. 

Because equation (7) is non-linear, its solution must be found using an iterative approach like Iteratively 

Reweighted Least Squares (IRLS): 

 

Examples 

The code was implemented statistically in a wide range of synthetic data set in order to test its stability. 

Each data set was generated by convolving a particular wavelet with a particular reflectivity. Features of 

both wavelets and reflectivities used are described below: 

Wavelets: trapezoidal amplitude spectrum wavelts with corner frequencies given by f=[f1,f2,f3,f4] were 

used. Frequencies f1 and f2 remained constant at f1=1 and f2=2 Hz while f3 and f4 were varied in the 

values of [20,30,40,60] and [30,40,50,70]  [Hz] respectively, where f_3 < f_4. In each combination of f 3 

and f4, a constant phase of c=[0,10,20,30,45,60] [deg] was applied. 
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Reflectivity: The code is very sensible to the number of traces that is chosen. After experiencing with 

different N number of traces, convergence is achieved for N > 10. In this work, data set consisted of 20 

uncorrelated traces of nt=100 samples per trace. The amplitude of the reflector has a non-Gaussian 

distribution with sparsity δ varying in a range of  [0.1, 0.3, 0.6, 0.8]. Sparsity defines the fraction of non-

zeros reflectors in the reflectivity series. 

Data was contaminated with white Gaussian noise with both signal to noise ratio of 5 and 20. Kurtosis was 

used to calculate the phase correction that was applied to the estimated wavelet. The maximum of the 

Kurtosis indicates the correct phase correction needed to convert the estimated wavelet in a zero phase 

wavelet. Figures 1 and  2 show examples of the performance of the algorithm under different values of 

SNR, sparsity and frequency. 

 

 
Figure 1. Example of the performance of the code when SNR=20, sparsity=0.8, and constant phase added of  c=30: (a) true wavelet (left) and 

estimated wavelet (right),  (b) kurtosis vs phase correction. Maximum of the kurtosis corresponds to a phase correction of -33 deg. 

 

 

Figure 2. Example of the performance of the code when SNR=5, sparsity=0.1, and constant phase added of  c=30: (a) true wavelet (left) and 

estimated wavelet (right),  (b) kurtosis vs phase correction. Maximum of the kurtosis corresponds to a phase correction of -29 deg. 

 

Conclusions 
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The assumption of non-correlated traces on which this code was developed is fundamental to guarantee the 

adequate performance of this method. The quality of the result also depends on choosing sufficient number 

of seismic traces. The level of sparsity of the reflectivity series and the amplitude content of the seismic 

wavelet do not affect phase estimations. In summary, this code has the potential to be used in real data that 

shows a complex geology. 
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