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Summary

Two different prestack interpolation methods, 5D interpolation by Fourier reconstruction sswhdip

based data synthesis, are contrasted, compared, and cascaded on a sparsely acquired and heavily structul
3D land data seSystematic testingevealsthat cascading the two approachessgoodresultswhich

providea combination of (iyegularupsamplingalong the crosslinemidpoint coordinate and (igapHfilling
alongcertain shot and receiver lines which wetscated in the fielthecause atherugged terrain.

Introduction

Multi-dimensionalinterpolation by Fourier reconstructicem algorithmoriginally conceived by Liu and
Sacchi (2004) anfirsti mp| ement ed i n industry unde\200B)hhas bann
begunto enjoy routine production use. In light of some recent-detumentdsuccesses(g.Perz et al.,
2009;Hurt et al., 2008Downtonet al., 201], there is a tendency within the industoyaccept its output as
agoodreconstructiorof thetruetraces that would have been recorded in the fiettle ideal case with
sources and receivers deployealatissing éta locationsWhile there is no question thab interpolation
is an excellentechnology weemphasize that is not differentthan any other processing algorithm in the
sense that it ifounded on a seff otnathematical assumptioasd therefore carriesset of limitations.
Another very googbrestack interpolation algorithm is basedeodip-scan analysisf coherent energy on
neighbouring traces in shot and receiver gatfgasdan, 1987)This dip-scan algorithnfwhich we term
ADSI NTERP 0) fferera seof assumptians dnd limitationsnd fortuitously enough inhay work
well in cases where 5D interpolatibreaksdown and viceversa The followingrealdata exampléto be
bolstered by syntheti@sting in the oral presentatioliystratestherelative algorithmic pros and cons of
5D interpolation and DSINTERRNd also shoshow judicious cascadingf the two approachesan giwe
excellentresults- in effect combining the best of both worlds.

Theory and/or Method

5D interpolatiorentails pging an inverse problem which essentially seeks to compute an optimal set of
spatial Fourier coefficienthatat once reconstruct the existing (i.e., sparsely acquired) input traces and also
exhibit certain properties of coherence in the frequemayenunber domain wher e fAwavenumkt
understood to comprise multiple spatial dimensioAseach temporal frequency, a separate inverse

problem isposedn which thedata space comprises the input traces describfediirspatal dimensions
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(cmp-x, cmpy, azmuth, offset, or cmyx, cmpy, offsetx, offsety) , andthe model space comprises the
associated spatial Fourier caeiénts Once these coefficientse computed, the algtitim reconstructs
traces at the missing locatiorihe main theoretical limitagn of interest in this papes the fact that the
algorithmhas problems performinggular upsampling alorthe midpoint coordinates in the case of
spatially aliased daf@.g., Naghizadeh, 2010; Wang et al., 20E@)tunately, thigheoretical limitatio is
not always manifest oreal data, possiblgecause the spatial sampling exhikitsndom, as opposed to
systematic, character in at least one of the four dimenaiwi'sr because tltata submitted to upsampling
experiments often lack sufficient sature to exhibit the aliasing conditiorhigh gives rise to the problem.
Our sparse real data example is an excellent candidate for probing the severity of this algorithmic limitation
because the survey exhibits regular sampling in some places, anthirsagapling in others; moreover,
the data are highly structured.

DSINTERPIs a coherencguided timespace algorithmvhich improves the sampling of 3D volumes by
inserting new shots and receivers along existing shot and receiveiliealgorithm idetifies dominant

dip directionsvia trial dip scaracrosseighbouring traces, amaterpolated data segmerreconstructed

by local slant stack along these dominant directidasisike 5D interpolation, DSINTERP is naturally

suited for upsampling alongidpoint coordinateshowever, becauseig a local techniquerhich uses only

a small number of adjacent input tracesamnot infill large gaps along shot/receiver lines. By contrast 5D
interpolation is a global technique which uses information fromyrtraces across many spatial
dimensions, so it can often do a good jolextendingmissing portions of acquisition lines.

Examples

The real data set under investigation is a sparsely shot 3D from the Canadian foothills. The sparse
acquisition geometry $iers fromtwo main problems(i) the shot spacing (i.espacingalong shot lines) is
four times coarser than the receiver spacing, giving rise to a highly elongated natural cmp bin (specifically,
39 x 156 m){ii) several shot and receiver linesve ber truncated in the field because of access
limitationsassociated witlthe ruggedopographyin light of the relative algorithmic pros and cons
discussed abovene reasonable approach isige DSINTERP talecrease the shot spacing (and thereby
upsamplehecrosslinemidpoint coordinatein order to cast the datatonsquare bin§.e., of size 39 x 39

m), and 5D interpolation to extend certamssingsegments of source and receiver lines. Figure 1 shows a
single inline from a structure stack of the orig a | (i .e., AurrcashontetheBox3@me d o)
grid together with the associated surface map (inline is indicated by thick blue line )n #ssts and
receivers are shown by green and red dots, respecthaly the disparity in shonhd receiver spacinjs

Areas of low foldare apparent on éfsection Figure 2 shows the corresponding image afteertingan
additional 3 shot stations between existing ondse., the shot spacing has been reduced by a factor of
four) usingDSINTERP, therebyreducingthe natural cmp bin size from 39 x 156 n8&x 39 m While
DSINTERPhasgreatlyimprovedimage quality, it cannot infill a largehunk of missinghot line coverage
(missing segment shown lotack box infigure insef and by black aow in main pang andlow fold

persists across many trageshe vicinity of the missinghot line Figure 3 shows the result of cascading
DSINTERP followed by 5D interpolatiofror illustrative purposes, we parameterized the 5D interpolation
algorithmin such a way that it manufactured new data along the single missing shot line seggent

(thick green line in inset), ambwhere elsevarious alternative output data configurations and cascading
strategies will be explored in the oral presentafidre additional uplift in image qualitis modest but
nonetheless visible, anddsie tothe fact that 5D interpolation has succeedesyithesizing the missing
segment of shdine.
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There are many ways to combine the two methods to make full use oftke gfanterpolation. For

example, one can further improve the image quality by inserting shot lines and receiver lines totimerease
fold of CMPsand to improve the offset and azimuth samplidgother idea is to switch the order of
interpolationi use 5D interpolation first to regularize the data on the original grid and then use DSINTERP
to upsample the data onto the finder grid. We are comparing different processing flows to find an optimal
solution to the land data interpolation problem.
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Figure 2: Structure stack of data after DSINTERP (main) together with modified surface geometry map isichysiong of new shotalong
existing shot lineginset).

Recovery i 2011 CSPG CSEG CWLS Convention 3



Figure 3: Structure stack of data after DSINTERP followed by 5D interpoldtisatshows modifiedsurface geometry magdter inclusiorof
new shots along existing shot lines (via DSINTERP) together with inciwgia previously missing segment of slime (via 5D interpolation).

Conclusions

Both 5D interpolation and DSINTERP carry relative algorithmic advantages and limitations. We have found
that judicious cascading of the two algorithms has given good results on a highly structured and sparsely
acquired 3D land data set.
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