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Summary 

Rank-reduction filters operating on constant-
frequency slices are highly effective at 
removing Gaussian random noise. Prestack 
seismic data, however, often contains spatially 
erratic noise which is far from Gaussian, 
sometimes causing these filters to give poor 
results. Here we describe new robust rank-
reduction filters which can handle both 
Gaussian and erratic noise, and we present 
examples using real data. 

Introduction 

Random noise is often erratic – that is, it has 
wild values (outliers) that do not obey a 
Gaussian distribution. When we apply statistical 
estimators designed for Gaussian noise to such 
data, the results are often poor. Figure 1 shows 
how the arithmetic mean (the optimal estimator 
for errors having a Gaussian distribution) is 
badly skewed by a few outliers, while the 
median is not. Estimators like the median that 
are insensitive to outliers are termed robust. 

 

Figure 1: The arithmetic mean is skewed by 

outliers, while robust estimators like the median 
give a reasonable answer. 

Land prestack seismic traces often contain 
erratic noise (Claerbout and Muir, 1973). Air 
blast, power line noise, parity errors, isolated 
noise bursts (often due to deconvolved spikes, 
zeroes, and clips), poor quality shots, scattered 
shot noise, disabled or poorly coupled 
geophones, uncorrected polarity reversals, 

wind, rain, and endless other effects can lead to 
noise which is non-Gaussian in the spatial 
direction. This problem is exacerbated by two 
developments. First, AVO-friendly processing 
flows forbid the application of trace-by-trace 
scaling, a simple but effective means to tame 
high-amplitude outliers. Second, modern 3D 
surveys are often huge, making manual trace 
editing impractical. 

Removing noise before stacking can improve 
multiple removal, AVO analysis, prestack 
inversion, and the final stack. It’s also critical to 
remove severe erratic noise before prestack 
migration, as the migration operator will smear 
the noise across the section, making it 
impossible to correct afterwards. 

Over the last ten years a rich family of random 
noise suppressors based on matrix rank 
reduction on constant-frequency slices has 
been developed: 

 Eigenimage (Trickett, 2003) 

 Cadzow, also know as SSA  
(Trickett, 2002, 2008; Sacchi, 2009) 

 Hybrid Eigen-Cadzow  
(Trickett and Burroughs, 2009) 

Each method works on a regular grid of traces 
in any number of spatial dimensions using 
Algorithm 1 (next page). The methods vary 
primarily in how they form the matrix in step 2.1. 
Cadzow filtering in one spatial dimension, for 
example, creates a Hankel matrix, and in two 
spatial dimensions creates a Hankel matrix of 
Hankel matrices. Hybrid Eigen-Cadzow 
concatenates Hankel matrices together. Trickett 
and Burroughs (2009) demonstrated these 
filters on prestack data. 

mailto:strickett@fugro.com
mailto:strickett@fugro.com


  
GeoConvention 2012: Vision 1 

 

Algorithm 1: Rank-reduction filtering on constant-frequency slices. 

The crucial noise suppression step is 2.2, 
reducing the matrix rank. Typically one uses a 
fast approximation to a truncated Singular 
Value Decomposition (truncated SVD). See 
Trickett (2003) and Gao, Sacchi, and Chen 
(2011). This is optimal in that, given an n-by-n 
matrix A and a rank k, it generates the rank-k 
matrix R that minimizes 

 

Thus the truncated SVD is a least-squares 
solution, and performs well when the noise is 
Gaussian but poorly when it is not. Our goal is a 
robust rank reduction that performs well for all 
random noise. 

Method 

Many methods of robust rank reduction have 
been developed in the last few years. Here we 
combine iteratively reweighted least squares 
(Scales and Gersztenkorn, 1987) with weighted 
rank reduction (Srebo and Jaakkola, 2003), 
which we will call Iteratively Reweighted Rank 
Reduction, or IRRR. Given a matrix A 
corresponding to an input frequency slice S, 
Algorithm 2 shows how to calculate a robust 
rank-reduced matrix R. 

The algorithm weights frequency slices rather 
than matrices so as not to access individual 
matrix elements. When combined with efficient 
algorithms for block-Hankel matrices (Gao, 

Sacchi, and Chen, 2011), we can avoid 
explicitly forming the matrix. 

The reweighting scheme for the frequency slice 
T is critical.  It must produce a solution which is 
robust (insensitive to outliers) and efficient 
(similar to the non-robust solution for Gaussian 
noise). We prefer redescending schemes such 
as bisquare or Hampel, as they can better 
handle large outliers (Maronna et al., 2006). 
Suppose frequency slices S and T of Algorithm 
2 have samples {si} and {ti} respectively. Then a 
bisquare reweighting is 

 

and  is 4.7 times a robust estimate of the 
standard deviation of si – ti (Ji, 2011). 

Examples 

Figure 2 shows a slice through a synthetic two-
dimensional grid of seismic traces having three 
planar events and strong erratic noise. Four 
different noise filters are tried. The first three –
all least-squares methods – give poor results, 
but robust Cadzow does an excellent job of 
recovering the signal. 

 

 
Algorithm 2: A robust rank reduction

R ← Rank-reduced A. 

Iterate until the changes in matrix R are small… 

T ←  Frequency slice derived from matrix R using step 2.3 of Algorithm 1. 

Reweight frequency slice T based on S. 

B  ← Matrix derived from frequency slice T using step 2.1 of Algorithm 1. 

R  ← Rank-reduced B. 

 

1: Take the Discrete Fourier Transform (DFT) of each trace. 

2: For each frequency… 

2.1:  Insert the complex values for this frequency and all traces into a matrix. 

2.2:  Reduce the rank of the matrix. 

2.3:  Place the matrix entries back into the DFT of the traces. 

3: Take the inverse DFT of each trace. 
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Figure 3 shows real CDP gathers that are 
contaminated with high-amplitude incoherent 
shot noise at the very near offsets – so high of 
an amplitude that standard Cadzow filtering in 
the CMP-offset domain distorts some coherent 
energy. Robust Cadzow does a better job of 
removing shot noise and preserving coherence. 
The stack (Figure 4) is also improved. 

Conclusions 

The world is not Gaussian, and we can come to 
considerable grief assuming it is. Here we have 
described a fast and simple means to convert a 
rank-reduction filter into a robust filter that can 
deal with both Gaussian and erratic noise. The 
result is a novel random-noise attenuator 
capable of handling the diverse statistical 
predicaments found in prestack land seismic. 
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Figure 2: A synthetic model with two spatial dimensions (only a one-dimensional slice is shown). The input on the 

upper right is composed of signal plus mild Gaussian noise, with one-third of the traces (selected at random) 
contaminated with strong erratic noise. On the bottom row, four types of noise suppressors are applied to the input. 
Only robust Cadzow fully recovers the signal. 
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Figure 3: Top left is every fifth CMP gather from a data set with incoherent shot noise contaminating the very near offsets. Top 

right has conventional f-xy Cadzow applied in the CMP-offset domain. Bottom right has robust f-xy Cadzow applied instead. 
Bottom left is the difference between the two data sets on the right. Note how much more shot noise the robust filter has 
removed than the conventional Cadzow. Also note that the extreme amplitude of the shot noise may have caused the 
conventional Cadzow to remove a small amount of coherent energy in the centre of the gathers. Data courtesy of Connacher 
Oil and Gas Limited. 

 

 

 
Figure 4: Stacks of the above gathers. Robust Cadzow (right) has removed more erratic 

noise than conventional Cadzow (centre). Data courtesy of Connacher Oil and Gas Limited. 

 


