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Summary 

In this paper, we present an algorithm for seismic source wavelet estimation that is based on seismic 
time frequency spectral decomposition with matching pursuit technique. The main assumption of this 
algorithm is that the source wavelet is stationary for single wavelet estimation in a selected time window 
and that the source wavelet has normalized energy to avoid scale ambiguity between reflectivity and 
source wavelet amplitude. 

Introduction 

In seismic exploration, a short duration seismic source wavelet (pulse) is transmitted from the surface, 
reflected from boundaries between underground earth layers, and received by an array of sensors on 
the surface.  With the assumption that this seismic pulse wavelet is not distorted during its propagation 
(perfect elastic media), the recorded seismic trace x can be modeled as the outcome of a convolution 
between the reflectivity sequence (e.g. layered earth model) and a source wavelet, i.e. 

                                                                                                 (1) 

where r refers to a time series of reflect coefficients and h refers to a source wavelet. Because the 
convolution of the source wavelet destroys many low and high frequencies in reflectivity, the sharp 
layered structures are smeared in our received traces. Therefore, removing the effect of the source 
wavelet’s impact on our received traces is of great significance.  

The deconvolution process involves separation of the components of convolution in the observed trace 
x. Satisfactory results were obtained when one component was known. However, when only the 
observation is known, the problem becomes much more difficult. In this case, uniqueness is no longer 
satisfied and strong hypotheses have to be made about the components. Fortunately, we have very 
strong reasonable a priori information about r (i.e. the sparse structure) that makes solving the problem 
possible. A further assumption of minimum phase of h and white noise of r leads to predictive 
deconvolution (Robinson and Treitel, 1980). However, the minimum phase assumption cannot always 
be satisfied in the real world. Seeking an alternative way for mixed phase wavelet deconvolution has 
become a topic of great interest in current research (e.g. Dondurur, 2010). Solving equation (1) without 
knowing both r and h is categorized as blind deconvolution and usually involves a non-linear inverse 
problem.  Such kind of inverse problems are generally ill-posed due to a band limited source wavelet 
and the sparse structure of r, which makes the equation solver complicated (e.g. Lopes and Barry, 
2001). When reflectors are well separated in seismic data, a sparse inverse with an optimal L1 norm 
can approach a unique solution. We propose a simple algorithm that is based on the homotopy method 
of sparse pursuit and wavelet decomposition techniques to estimate the source wavelet. 

 

 

 

mailto:yao@gedco.com


  

 
GeoConvention 2012: Vision 2 

Method description 

 

The method is based on time-frequency decomposition. In order to explain the method, first consider 
the case of only one reflector with the reflection coefficient  located at time ti and equation (1) becomes 

                                                                                                                    (2) 

Even in such a simple case, the solution to equation (2) is still ambiguous for the choice of the scale 
factor between  and h. By assuming a stationary procedure, we can define that the energy embedded 
in the source wavelet is normalized to a unit, and then decompose x(t) into a set of wavelets w, such as 
Ricker or Molet wavelets , i.e. 

                                                                                    (3) 

where p represents number of central frequencies. Wavelets centered at both different frequencies and 
time constitutes a set of wavelet dictionary. Then 

                                                            (4) 

Where the bj are complex coefficients that contains both factors of aj and  (e.g. Asif, 2008); tu,fj and ɸj 

are center time, peak frequency and phase of wavelets in the dictionary. By solving equation (4) for bj, 
x(t) can be reconstructed. The source wavelet can then be achieved by normalizing the reconstructed 
x(t). 

In an analogue to the procedure above, a seismic trace can be time-frequency decomposed by 

matching pursuit (e.g. Asif, 2008), where the data is reconstructed to corresponding to each reflection 

coefficient step by step. If wave propagation is stationary, we can expect to obtain the same source 
wavelet at each pursuit step. However, such a stationary assumption may not hold in a real case and 
the final source wavelet is taken as the average of all estimated wavelets. It is important to note that, 
even if a specific wavelet is used to generate a set of elements of a wavelet dictionary for 
decomposition, the complex coefficient that contains the amplitude and phase can adjust the shape 
differences between the source wavelet and the wavelet used for the decomposition.   

Because of the presence of noise in seismic data, high noise levels will also be used for data fitting (in 
addition to the reflectivity series). In such a case (where confusion exists between noise and data) a 
unique solution for a dense reflector distribution may not exist. Therefore, in practice, a window needs 
to be selected where seismic events are relatively well separated. 

In summary, our algorithm can be defined as: 

a) generate a wavelet dictionary; 

b) select a window where the reflectors inside the window are well separated;  

c) use matching pursuit to find the wavelet decomposition at a sparse time location; 

 d) calculate the residual between data and reconstructed data and go for the next sparse location. 

As described above, our algorithm is actually a matching pursuit seismic time-frequency spectral 
decomposition and this decomposition effectively performs seismic data noise attenuation because it 
uses a wavelet dictionary and sparse reflectivity to match the seismic data.  

Therefore, unlike many other algorithms that alternate between updating the sparse reflectivity and the 
source wavelet by solving ill-posed object equations (e.g. Kaaresen, 1997), our algorithm is robust for 
noise contaminated data.  
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Example 

A synthetic data example will illustrate our algorithm. A mixed phase wavelet is shown in Figure1 (a), 
and is convolved with a well separated random reflectivity in Figure (b), which produces the synthetic 
observed data in Figure 1 (c) with 5% added white noise. Figure 2 shows the spectrums of source 
wavelet (a), reflectivity (b) and synthetic data (c), which relate to Figure 1, respectively. The wavelet 
dictionary is generated from a Ricker wavelet and its 90 degree rotated version. The estimated source 
wavelet, reflectivity and observed data are shown in Figure 3. Figure 4 shows the spectrums that 
correspond to Figure 3. It can be seen that both source wavelet and reflectivity are well estimated. Also, 
the estimated data are noise-free as expected. 

 

                     

Figure 1. Input synthetic data                                      Figure 2. Spectrum of input data 

 

 

 

                     

Figure 3. Estimated  data                                                Figure 4. Spectrum of estimated data. 

 

 

Conclusions 

We have presented an algorithm for estimating the seismic source wavelet based on matching pursuit 
seismic time frequency decomposition. Because the wavelet “dictionary” is generated with different 
dominant frequency bands, each element in the dictionary has a different length. Together with the 
complex coefficient that can adjust the phase change to accommodate the source wavelet shape, we 
can flexibly model different source wavelet shapes.  This algorithm does not involve any kind of ill-
posed inverse; it works in a stable manner. Finally using the redundant property of the wavelet 
dictionary to fit data, this algorithm is robust for noisy data as it also works to attenuate noise. 
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