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ABSTRACT

We present a pre-stack amplitude inversion of P-wave data for fracture orientation and
intensity. We test the method on multi-azimuth multi-offset physical model reflection data
acquired over a simulated fractured medium. Our simulated fractured medium is com-
posed of phenolic material with controlled symmetry planes, and its elastic properties have
already been determined using traveltime analysis. This experimental model represents a
HTI layer. We follow Jenner (2002) for amplitude inversion of small incident angle data
to extract the fracture orientation (direction of isotropic plane of the medium), and are
able estimate the fracture orientation quite accurate. By knowing the fracture orientation,
we have modified the linear PP reflection coefficient equation given by Rüger (2001) to
invert for anisotropy parameters (ε(V ), δ(V ), γ). We incorporated some constraints on the
vertical velocities and density in the inversion process. Large-offset data are required for
the azimuthal amplitude inversion of the simulated fractured layer, as the material shows
only slight azimuthal amplitude variations. The results for all three anisotropy parameters
from AVAZ inversion compare very favorably to those obtained previously by a traveltime
inversion. This result makes it possible to compute the shear-wave splitting parameter, γ,
historically determined from shear-wave data, which is directly related to fracture intensity,
from a quantitative analysis of the PP reflected data.

INTRODUCTION

The ultimate goal of using AVO in fracture-detection studies is to invert the seismic
data for fracture orientation (stike) and the magnitude of fracture intensity. Open natural
fractures may hold fluid and can provide pathways for hydrocarbon flow. Detailed infor-
mation about fracture intensity and orientation can help optimize the drilling at sweet spots
(Zheng, 2006). Fracture orientation is defined as the dominant direction of fracture faces.
Fracture intensity is the product of the number of fractures per unit volume and their mean
cubed diameter (Nelson, 2001). Depending on the stress regime that causes fracturing, the
fracture orientation (however random) has a dominant direction confirmed by geological
field measurements (Nelson, 2001).

The effect of natural fractures, when seismic waves propagating through them, can be
well described by a medium with transverse isotropy (TI). Particularly, aligned vertical
penny-shaped fractures embedded in an isotropic horizontal background can be described
by a medium with horizontal transverse isotropy (HTI) symmetry (e.g., Thomson, 1986;
Tsvankin, 2001).

Assuming fractures can be described by an HTI medium, the azimuthal dependence of
P- and S-wave stacking velocities and reflection amplitudes has been used to extract the
information about the fracture intensity and orientation. The shear-wave splitting phenom-
ena due to fractures, has been historically used to detect fracture orientation (the direction
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of the fast S-wave). The shear-wave splitting factor, γ, directly related to fracture intensity,
has also been determined from an analysis of time delays of split shear waves (Crampin,
1981). Using P-wave NMO velocity variation with azimuth (VVAZ), fracture orientation is
considered to be in the direction of the fast P-wave. Some indicator of fracture intensity re-
sults from estimating the Thomsen δ parameter (e.g., Tsvankin, 2001; Grechka et al., 1999).
Zheng and Wang (2005) used a target-oriented VVAZ approach, in which the differential
residual NMO travel times between the top and the base of a fractured layer is used to invert
for fracture orientation and Thomsen δ parameter. Quantitative amplitude analysis is also
used for fracture detection, as in amplitude variation with the angle and azimuth (AVAZ)
method. Jenner (2002) reformulated the Rüger (2001) equation for P-wave reflection coef-
ficient from a boundary of two HTI layer, to directly invert for fracture orientation and the
anisotropic gradient (a combination of δ and γ parameters) from azimuthal amplitude data.

We present a derivation for an AVAZ inversion for fracture orientation, similar to that
used by Jenner (2002), on physically modeled data acquired over a simulated fractured
medium. We initially characterized this simulated fractured layer as a HTI layer with
known symmetry directions, using traveltime analysis on transmission data and estimated
all its elastic properties including the Rüger’s parameters (ε(V ), δ(V ), γ). The result for the
fracture orientation is quite accurate. We also propose a pre-stack amplitude inversion of
large-offset P-wave data, based on Rüger’s equation, to to invert for (ε(V ), δ(V ), γ), which γ
is directly related to fracture density. We achieve successful inversion results by applying
some constraints on vertical P- and S-wave velocity, and density.

THEORY

Fracture density

A plane-wave approximation for the PP reflection coefficient at a boundary between
two HTI media with the same orientation of the symmetry axis was developed by Rüger
(2001). Rüger’s equation for the HTI media with the symmetry axis along φ0 azimuth is
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where θ is the incident angle, φ is the source-receiver azimuth, α is the vertical P-wave
velocity (fast P velocity), Z = ρα is the P-wave impedance, β is the vertical S-wave
velocity (S‖-wave, fast S velocity) G = ρβ2 is the shear modulus, ∆ denotes the difference
in the elastic properties across the boundary. The average values of elastic properties in
the two layer is denoted by the terms with overscores. (ε(V ), δ(V ), γ) are the Thomsen-style
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anisotropy parameters for HTI media. They are defined using stiffness coefficients as:

ε(V ) ≡ c11 − c33

2c33

,

δ(V ) ≡ (c13 + c55)2 − (c33 − c55)2

2c33(c33 − c55)
, (2)

γ ≡ c44 − c55

2c55

.

ε(V ) and γ describe the difference between vertical and horizontal wave velocities, and
δ(V ) describes the departure from isotropy for near vertical propagation. This equation
relates the AVO response to the anisotropy parameters and provides physical insight into
the reflection amplitudes. Let’s assume that the orientation φ0 is known. Using Ruger’s
equation, we present a linear inversion to obtain the three anisotropy parameters.

We reformulate Rüger’s equation as a function of P- and S-wave velocities using
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Equation 1 has the equivalent form
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The first three terms is the approximation given by Aki and Richards (1980) at a boundary
between two isotropic media, The second three azimuthal dependent terms indicate the
influence of each of the anisotropy parameters. Our AVAZ inversion for fracture intensity
is based on equation 4.

Fracture orientation

Considering only small incident angle data (e.g., less than 35◦), for which the sin2 θ tan2 θ
term can be neglected. Equation 1 can then be written as:(

G1 +G2 cos2(φ− φ0)
)

sin2 θ, (5)
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where
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Equation 5 describes the behavior of RHTI
PP at small incident angles as a function of the

AVO intercept and gradient. The gradient term

Q = G1 +G2 cos2(φ− φ0), (9)

is composed of the azimuthally invariant term G1, and an anisotropic term G2, and is non-
linear in the three unknowns (G1, G2, φ0). The goal here is to invert for the AVO gradient
observed in amplitude data for these three unknowns. A description of a technique to
bypass the non-linearity and to apply a linear inversion for these three unknowns follows.

Using the identity sin(φ − φ0)2 + cos(φ − φ0)2 = 1, the gradient term, equation 9
becomes

Q = (G1 +G2)cos2(φ− φ0) +G1sin2(φ− φ0). (10)

If the AVO gradient does not change sign azimuthally, the gradient versus azimuth vec-
tor delineates a curve that closely resembles an ellipse (Rüger, 2001) with the semi-axes
aligned with the symmetry plane directions of the fracture system (Figure 1). With this in
mind, let’s perform a change of variable to align our coordinates with the fracture system.
Let call the coordinate system aligned with the fracture system the (y1, y2), then every point
of the gradient ellipse in this coordinate system has

y1 = r cos(φ− φ0), (11)
y2 = r sin(φ− φ0),

and r is the vector magnitude. In this coordinate system the gradient term can be written
as:

Q = (G1 +G2)y2
1 +G1y

2
2. (12)

The acquisition coordinate system, (x1, x2) = (r cosφ, r sinφ), can be thought of as a φ0

rotated version of the (y1, y2) coordinate system (Figure 1). If we wish to write the gradient
ellipse in equation 12 in the acquisition coordinate system, the ellipse equation inherits a
nonlinear term x1x2, as in the form of

Q = W11x
2
1 + 2W12x1x2 +W22x

2
2. (13)

Equation 13 is a quadratic form, and can be written in a matrix form,

[
x1 x2

] [W11 W12

W12 W22

] [
x1

x2

]
= XTWX. (14)
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FIG. 1. Reference coordinate system. (x1, x2) is the acquisition coordinate system, and (y1, y2) is
the coordinate system align with the fracture system. φ is the source-receiver azimuth, and φ0 is
the fracture orientation azimuth/

Using this form, the non-linearly with respect to the orientation is hidden in the Wij coeffi-
cients. The matrix W is symmetric, and therefore orthogonality diagonalizable (e.g., Lax,
1997). By computing the eigenvalues,

λ1,2 = 0.5

[
(W11 +W22) ±

√
(W11 −W22)2 + 4W 2

12

]
, (15)

we can rewrite equation 13 in the form;

Q = λ1y1
2 + λ2y2

2. (16)

Comparing coefficients from equations 16 and 12, we obtain: G1 +G2 = λ1 and G1 = λ2,
so:

G1 = 0.5

(
W11 +W22 −

√
(W11 −W22)2 + 4W 2

12

)
,

G2 =

√
(W11 −W22)2 + 4W 2

12. (17)

From the eigenvalue problem, we also know that orthogonal rotation matrix, Rφ0 relates
the two coordinate system, as [

y1

y2

]
= Rφ0

[
x1

x2

]
, (18)

where the rotation angle (φ0) obeys (e.g., Lax, 1997)

tan 2φ0 =
2W12

W22 −W11

. (19)
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This results in two values for φ0 where φ(1)
0 = π/2 + φ

(2)
0 . Using the trigonometric identity

tanφ0 = 2 tanφ0
1−tanφ0

2 , we obtain two values for φ0 as:

φ
(1)
0 = tan−1

W11 −W22 +
√

(W11 −W22)2 + 4W 2
12

2W12

 , (20)

φ
(2)
0 = tan−1

W11 −W22 −
√

(W11 −W22)2 + 4W 2
12

2W12

 . (21)

Equation 20 is used by Jenner (2002) without rigorous derivation, and is equivalent to
what used by Grechka et al. (1999) in solving for fracture orientation form the azimuthal
variation of NMO velocity.

AVAZ INVERSION FOR FRACTURE ORIENTATION

The approximation to the PP reflection coefficient using equation 5

R = I +
(
W11 cos2 φ+ 2W12 cosφ sinφ+W22 sin2 φ

)
, (22)

where R is the pre-stack reflection amplitude, and φ is the acquisition source-receiver az-
imuth. Incorporating the amplitudes from different azimuths and small incident angles
(e.g., up to 35◦) as in the input data (Rnm), equation 22 can be used to express a linear
system of ”nm” equations in three unknowns:

cos2φ1sin2θ11 2 cosφ1 sinφ1sin2θ11 sin2φ1sin2θ11
...

...
...

cos2φ1sin2θn1 2 cosφ1 sinφ1sin2θn1 sin2φ1sin2θn1
...

...
...

...
...

...
cos2φmsin2θ1m 2 cosφm sinφmsin2θ1m sin2φmsin2θ1m

...
...

...
cos2φmsin2θnm 2 cosφm sinφmsin2θ1m sin2φmsin2θ1m


(nm×3)

[
W11

W12

W22

]
(3×1)

=



R11 − I
...

Rn1 − I
...
...

R1m − I
...

Rnm − I


(nm×1)

(23)
where m is the number of azimuths, and n is the number of incident angles at each az-
imuth. The AVO intercept, I , is calculated using the vertical P-wave velocity and density.
Equation 23 in matrix form can be written as,

Gnm×3X3×1 = Rnm×1. (24)

The unknown vector X = (W11,W12,W22) can be obtained from a damped least-squares
inversion, as X = (GTG + µ)−1GTR where µ is the damping factor. After the AVAZ
inversion, knowing Wij , we used equations 20 and 21 to estimate the fracture orientation.

AVAZ INVERSION FOR FRACTURE INTENSITY

Assuming the known fracture orientation, the PP reflection coefficient in equation 4 can
be considered as a function of six parameters (∆α

ᾱ
, ∆β
β̄

,∆ρ
ρ̄
,∆ε(V ),∆δ(V ),∆γ). Equation 4
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can be written as

R = A
∆α

ᾱ
+B

∆β

β̄
+ C

∆ρ

ρ̄
+ D ∆ε(V ) + E∆δ(V ) + F∆γ, (25)

where R is the pre-stack reflection amplitude, and the coefficients A, B, C, D, E, and F
are defined in of equation 4. These coefficients are functions of the incident angle, azimuth,
and the background velocity model. Incorporating the amplitudes from different azimuths
and incident angles (e.g., far-offset up to 45◦) as the input data in Rmn below, equation 25
can be used to express a linear system of ”mn” equations in six unknowns:

A1φ1
B1φ1

C1φ1
D1φ1

E1φ1
F1φ1

...
...

...
...

...
...

Anφ1 Bnφ1 Cnφ1 Dnφ1 Enφ1 Fnφ1

...
...

...
...

...
...

...
...

...
...

...
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A1φm B1φm C1φm D1φm E1φm F1φm

...
...

...
...

...
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Bnφm

Cnφm
Dnφm

Enφm
Fnφm


(nm×6)


∆α/α
∆β/β
∆ρ/ρ
∆δ
∆ε
∆γ


(6×1)

=



R11

...
Rn1

...

...
R1m

...
Rnm


(nm×1)

(26)

wherem is the number of azimuths, and n is the number of incident angles at each azimuth.
The coefficients are calculated using a smooth background isotropic velocity. Equation 26
in matrix form can be written as,

Gnm×6X6×1 = Rnm×1. (27)

The unknown vector X can be obtained from a damped least-squares inversion, as X =
(GTG+ µ)−1GTR where µ is the damping factor.

PHYSICAL MODEL REFLECTION DATA

We tested the proposed AVAZ inversions for fracture orientation and intensity on phys-
ical model reflection data acquired over a four-layered model, (Figure 2). Our model con-
sists of isotropic water and plexiglas and an HTI layer composed of phenolic material.
The construction of the experimental phenolic layer and its initial characterization are pre-
sented in another report (Mahmoudian et al., 2012a). The symmetry of phenolic materials
is relatively well controlled. We found that the experimental phenolic layer approximates
a weakly anisotropic HTI layer, or equivalently a vertically fractured transversely isotropic
layer with known fracture orientation. The five independent parameters (α, β, ε(V ), δ(V ), γ)
required to describe our simulated fractured medium are listed in Table 1.

Table 1. Elastic properties of the simulated fractured layer.

α (m/s) β (m/s) ε(V ) δ(V ) γ

3500 1700 −0.145 −0.185 0.117
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FIG. 2. The four-layered earth model used to acquire reflection data. The acquisition 0◦ azimuth is
parallel to the fracture symmetry axis.

We used reflection amplitudes from nine long offset common midpoint (CMP) gathers
acquired along 0◦, 14◦, 28◦, 37◦, 45◦, 53◦, 63◦, 76◦, and 90◦ azimuthal angles. Figure 3(a)
shows the CMP seismic line acquired along the 90◦ azimuth (fracture plane). The ampli-
tudes reflected from the top of the simulated fractured layer are inputs to AVAZ inversion.
We manually picked the amplitudes and applied deterministic corrections to make them
represent reflection coefficients required by an amplitude inversion. The corrections for
geometrical spreading, emergence angle, transmission loss, and source-receiver transducer
directivity have been applied. A detailed description for the data acquisition and corrections
is given in another report (Mahmoudian et al., 2012b).

The corrected reflected amplitudes from the top of the fractured layer for nine azimuths
between 0◦ and 90◦ are shown in Figure 4. The large oscillations in the amplitude data are
due to the interference with the top reflector reverberations which has a different dip than
the target event, Figure 3(b) shows the wave interference effect on the target amplitudes.
The presence of large oscillations in the data causes the AVAZ inversion to be unstable de-
pending on the maximum incident angle used. To avoid unstable inversion, we smooth the
amplitude data prior to inversion. Smoothing is applied by using the best fit polynomial of
degree n = 10 to the amplitude data. The smoothed amplitude data are shown in Figure 5.

(a) (b)

FIG. 3. (a) 90◦ azimuth data with a long gate automatic gain control applied. In the display,event
"A" is the PP reflection from the top of the plexiglas layer, event "B" is the PP reflection from the
top of the fractured layer (our target), event "C" is the PS reflection from the top of the fractured
layer, event "D" is the PP reflection from the bottom of the fractured layer, and event "E" is the PP
reflection from the base layer. (b) 90◦ azimuth data, zoomed on the target reflector, note the top
reflector reverberations’ interference with the target event.
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FIG. 4. Fracture top corrected reflection amplitudes from all nine azimuths. (a) All incident an-
gles,(b) the incident angles before the critical angle.
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FIG. 5. Fracture top smooth amplitude data input to the AVAZ inversions. (a) All incident angles,(b)
the incident angles before the critical angle.

ESTIMATED ORIENTATION OF THE SIMULATED FRACTURED LAYER

We use small incident angle data (maximum incident angle of 35◦) in the AVAZ inver-
sion based on equation 23 for the fracture orientation. Since the symmetry of the simulated
fractured medium is known and the physical model data acquisition coordinate was aligned
with the fracture system, we rotate our acquisition coordinate system to arbitrary directions
and used the proposed AVAZ inversion to estimate the fracture orientation. Table 2 shows
the predicted fracture orientations.

Table 2. Estimated fracture orientation from the AVAZ inversion.

True φ0 -0 20 40 50 60 80 90
Estimated φ0 -1.5 18.5 38.5 48.5 5 8.5 78.5 88.5

88.5 108.5 128.5 138.5 148.5 168.5 178.5

The method is successful in predicting the fracture orientation; however, there is an
ambiguity in the estimation as the method predicts both the fracture orientation and the
direction normal (symmetry axis) to it. Therefore, a priori knowledge of the fracture orien-
tation is required, perhaps from NMO analysis.
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ESTIMATED ANISOTROPY PARAMETERS OF THE SIMULATED
FRACTURED MEDIUM

Knowing the fracture orientation for our simulated fractured medium, we test the pro-
posed six-parameter AVAZ inversion on the physical model data. In the first implemen-
tation, we estimate all six parameters (∆α/α,∆β/β,∆ρ/ρ, ε(V ), ε(V ), γ) simultaneously,
using equation 26. For a given offset and depth of the fractured layer, the primary ray-path
is traced to determine the incident angle, using a PP raytracing code. Then the coefficient
matrix (coefficients are function of the incident angle and background velocity model) in
equation 26 are calculated.

The azimuthal variation of our amplitude data before 30◦ is very small (Figure 4), and
incorporating larger incident angles are required. Figure 6 shows the six-parameter AVAZ
inversion for different maximum incorporated incident angles, indicating that for the right
choice of the maximum incorporated incident angle, the linear AVAZ inversion results in
reasonable estimates for all six parameters. The critical angle for plexiglas/phenolic is
around 50◦. The six-parameter AVAZ inversion results demonstrated in Figure 6 indicate
the following points:

1. the six-parameter AVAZ inversion using small incident angles, less than 35◦, does
not produce good estimates for any of the six parameters, as there are not enough
data in the inversion.

2. Incorporating large incident angles (e.g., 40◦) up to 10◦ before the critical angle
can result in reasonable estimates for all the six parameters. The isotropic terms
(∆α/α,∆β/β,∆ρ/ρ), however, are estimated with much smaller errors compared
to the anisotropic terms, indicating of the larger influence of the isotopic terms on the
reflection coefficients.

3. Incorporating very large incident angles, closer to the critical angle, results in better
estimates for the anisotropy parameters as the azimuthal anisotropy is more pro-
nounced at larger incident angle data. However, it produces large errors for the es-
timates of the three isotropic terms. The anisotropy parameters ε(V ) and γ are more
accurately estimated, but the δ(V ) parameter which governs the near-vertical wave
propagation losses its accuracy. The overall error for all six parameters are larger
when incorporating incident angles close to the critical angle, as the linear Rüger’s
equation not valid in this region.

In an effort to obtain better estimates for the anisotropic terms, we used a second im-
plementation in which we applied some constraints to the three isotropic terms. There are
many other methods available to estimate the vertical P- and S-wave velocity and density
such as the AVA inversion of single azimuth data or by incorporating well log information.
We put three different constraints on these first three variables using the estimated values
of α, β and ρ from an AVA inversion of 90◦ (isotropic plane) azimuth data. Figure 7 shows
these constraints. With such constraints, the inversion results for the three anisotropy pa-
rameters, for various maximum incorporated incident angles, are shown in Figure 8. As
a result of these constraints, for the right choose of the maximum incorporated incident
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FIG. 6. Six-parameter AVAZ inversion for various maximum incorporated incident angles. The
estimate are compared to the values previously estimated from traveltime inversion.
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angle, the inversion results for ε(V ), δ(V ), and γ agree very favorably with those obtained
previously by traveltime inversion. For the right choice of the maximum incorporated in-
cident angle, the estimate for anisotropy parameters from constrained AVAZ inversion is
within 10%; these estimates are better compared to the estimates of the simultaneous six-
parameter inversion (Figure 6).
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FIG. 7. First three terms constraint from AVA inversion of 90◦ data.
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FIG. 8. Constrained AVAZ inversion for anisotropy parameters.
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CONCLUSIONS

We presented pre-stack amplitude inversion procedures to extract the anisotropy pa-
rameters (ε(V ), δ(V ), γ), and fracture orientation from the azimuthal variations in the PP
reflection amplitudes. As the shear-wave splitting factor, γ parameter, is directly related to
fracture intensity, we showed that it is possible to relate the difference in P-wave azimuthal
AVO variations directly to the fracture intensity of our simulated fracture layer. Accurate
linear inversion for the anisotropy parameters requires the employing of large-offset data.
However, incorporating very large offset data close to the critical angle should be avoided
as the linear Rüger’s equation is a plane wave solution and not valid close to the critical
angle.

The AVAZ inversion determines the fracture orientation with an inherent ambiguity, as
it predicts both the directions of the isotropic plane and symmetry axis of an HTI medium.
For an accurate prediction of the fracture orientation some other information is required,
such as azimuthal NMO and shear-wave splitting. These effects are qualitatively different
from azimuthal AVO and can be combined effectively to invert for fracture orientation.

Our inversion is based on the approximate reflection coefficients by Rüger (2001). Our
inversion estimates demonstrate that the Rüger’s equation is suitable for quantitative am-
plitude analysis of anisotropic targets, and can be employed for numerical inversion algo-
rithms.
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