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Abstract 

Research has shown that fractures can be modeled as a non-welded contact (linear slip) interface. 
Therefore, in the long wavelength limit, fractured homogeneous isotropic media are equivalent to 
transversely isotropic media (TI). The azimuthal anisotropic parameters (Thomsen, 1986) are related to 
the fracture character parameters: tangential and normal compliances. A group theory calculation 
(Schoenberg and Muri, 1989) was extended to calculate the elastic moduli of a fractured medium that 
the non-welded contact interface is not approach to zero. In this paper, seismic wave propagation is 
affected by properties of the fractures in three different cases: horizontal, vertical and tilted fractures 
embedded in a homogeneous isotropic medium. We illustrate the response of the fracture thickness in 
the synthetic seismograms in each case later on. 

Introduction  

The upper crust of the earth is considerably layered with complex geometry interfaces between layers 
with different elastic parameters as well as a single thin layer medium with a unique elastic parameter. 
The two half spaces in the limit of the interface are either in perfectly welded contact or imperfect non-
welded contacts. The imperfect non-welded contact interfaces are possibly formed due to artificial or 
natural unbalanced compressions and tensions exerted on the medium, Thus there are non-unique 
patterns such as horizontal, vertical and tilted fractures. The non-welded contact interfaces are 
embedded in background media, and these types of the geological structures, are known as joints, 
fractures and faults, depending upon the length and the width of the interface. In general 
understanding, the non-welded contact interface separates geological formations into two side spaces, 
and forms an anisotropic media, in which fast and the slow shear waves propagate, that are 
orthogonally polarized to each other (Crampin, 1986). However, the width of the fracture is normally 
less than 10cm, so that it is difficult to detect the fracture structure with typical frequencies of the 
seismic waves (Lines et al, 2008). Regardless of the seismic resolution, it is still hard to indicate the 
fracture structure in a homogeneous isotropic medium because there is no impedance contrast around 
the fracture. In 1980, Schoenberg in his pioneering work produced a theory that a fracture is modeled 
as a non-welded contact linear slip interface, where the particle displacements are the discontinuous 
across interface and the stresses are continuous across it. Additionally, the particle displacements are 
linearly proportional to the stresses. Pyrak-Nolte (1990) has confirmed non-welded contact interface 
theory by laboratory measurements. In 2000, Slawinski and Krebes used the 2D generalized 
homogeneous approach to model SH and P-SV wave propagation in nonwelded contact interface as a 
horizontal fracture 

Theory and Methods 

Schoenberg and Muir (1989) presented the group theory formula based on the effective medium theory 
(Backus, 1962) to conveniently calculate the elastic moduli for the fractured and unfracture media. 
Consider homogeneous media that are layered and perfectly bonded (Figure 1) to form the block 
layered medium. Let the block layered medium thickness, H, be smaller than the minimum wavelength, 
and perpendicular to the vertical axis Z. It includes n constituent isotropic layers, i=1, 2…n.  Respect to 
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the block of the layered medium H, each thin constituent has an individual thickness    and a relative 

thickness   =  /H. Under the long wavelength assumption, once the thickness and impedance of a thin 
constituent approaches zero, the behavior of the layered medium blocks are the same as transverse 
isotropic medium, where homogeneous media combine with the non-welded contact linear slip 
interfaces paralleled to horizontal axis X (Schoenberg, 1980).  In Hooke’s Law, the relationships of the 

stress    , elastic modulus     and strain     for i-th constituent can be written as       ∑       
 
    j=1

6; i=1 n. 

 
Figure 1: Block of the layered media               Figure 2: Matrix expression for Hooke’s Law 

The matrix expression presents the relationship of stress and strain for the transverse isotropy medium 

with vertical symmetrical axis (VTI). The square with dashed lines divides the stiffness matrix     into 4 

stiffness sub-matrixes  TT,  TN,  NT and  NN. Where  NT is the transpose of corresponding  TN 
(Schoenberg and Muir, 1989). Following Backus’s theory (1962), the layered media are parallel to the 
horizontal axis x(1) (Figure 1) and it is assumed that all of the stress components acting on the 

paralleled to layering planes are the same in all layers in the media, i.e.,σ3  σ33 , σ4  σ23 , σ5  
σ13 . i=1 n. And all strain components acting in the plane of the layering are the same in all layers over 

thickness H, i.e.  ε1  ε11 , ε2  ε22 , ε6  2ε12 . i=1 n. The other stress and strain components 

i.e. σ1, σ2, σ6 and ε3, ε4, ε5 are different from layer to layer, to calculate an average value will be taken 
to use as the constant value within a layer. Also the weighted average value of the thickness will be the 
value for the total value over full thickness H (Schoenberg and Muir, 1989). In the long wavelength 
assumption, once the layered medium is deformed, such as the ith constituent medium fractured, then 

the fracture layer will be soft, the cross-plane strain component ε̅N  will enlarge, while the in-plane 

strains εT relatively are decreased or are the same as the corresponding components in the 

background medium with constant value. As the ith constituent its relative thickness, the limit of  f 
approaches zero, then expression σN   NT̅̅ ̅̅ ̅εT   NN̅̅ ̅̅ ̅εN̅̅ ̅ (Figure1) is approximated to describe the 

relation of the stress and strain for a fracture,   Nf ≈  NNf̅̅ ̅̅ ̅̅   Nf̅̅ ̅̅  (Cui et al., 2012). It turns out that the 

fracture effects rely on modulus matrix (stiffness)  NNf, which is related to on-plane stress and cross-

plane strain of the fracture. There are the six independent components but only 2 of the non- negative 
parameters in the matrix will describe the characters of the fracture if the fractured medium is a 

transversely isotopic medium (TI). Let  NNf
−1̅̅ ̅̅ ̅̅ =z=[

zN 0 0
0 zT 0
0 0 zT

] for VTI medium. Here zN and zT are 

normal and tangential compliances of an average fracture of dimension length/stress (Schoenberg and 
Douma, 1988) respectively. Furthermore, the components of z in the plane of interface are equal. i.e. 

  44   55. If the width of the fracture does not approach zero and has nothing to infill the space, the 

fracture behavior will still exhibit linear action. Consider the width of the fracture layer as  f, with the 

relative thickness as  f respect to the medium thickness H, then  f   f . So the fracture layer moduli 
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should be  NNf   f NN,  TNf   f TN,  TTf   f TT, where  NN,  TN, and  TT are elastic moduli of the 
media with thickness H. So the fracture moduli (Figure 2) are  

  11   22=(   f
2) 11b  [

2hf
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Considering Thomsen’s parameters (1986), =
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Here ET=μzT, EN  (λ  2μ)zN are non-negative dimensionless fracture compliance that express the 

ratio of compliance in the fractures to the corresponding compliance in an unfractured medium. The 
relationship between anisotropic parameters with compliances of the fracture parameters has been 
established. Therefore, in a homogeneous background medium, the different width of the fracture has 

different fracture parameters zN. The limit of  f →0, will yield the elastic moduli for the transverse 

isotropic medium and this agrees with the solution from Schoenberg and Muir (1989) in which the 
fracture is modeled as a non-welded contact linear slip interface. 

In 1980, Schoenberg gave a linear slip interface theory: a fracture is modeled as a non-welded contact 
(linear slip) interface where the particle displacements are discontinuous across the interface and the 
stresses are continuous across it. The particle displacements are linearly proportional to the stresses. 

From his pioneering work, the compliances of the fracture parameter   are elicited in the boundary 
condition. For example, in the VTI medium, if one horizontal fracture can be modeled as a horizontal 
non-welded interface, then 

 + − −     

 −   +   

  represents wave motion as   and    respectively.   denotes normal (   ) and shear (    ) tractions 
of the motion. The signs of the plus and minus represent upper (left) and lower (right) medium at the 

interface or fracture, respectively.   is termed fracture parameter.  
N

 is normal compliance for normal 

incident compressional wave and  
 
 is tangential compliance for a normal incident shear wave.  

N
 and 

 
  
are orthogonal each other. In other words,  

 
 is parallel to the polarization of the shear wave and 

perpendicular to the polarization of the compressional wave, and vice-versa for  
N 

.The directions of 

the fracture and wave polarization are very critical factors and play an integral part in the fracture 
forward modeling. 

In 1982, Korn and Stockl presented 2D generalized homogeneous approach in which the fictitious grid 
points are introduced to extend one medium into the nearest-neighbor medium in order to model the 
SH wave propagation through a boundary. In 2000, Slawinski and Krebes used the 2D generalized 
homogeneous approach to model SH and P-SV wave propagation in nonwelded contact interface as a 
horizontal fracture. This FD scheme of wave motion with the fictitious grid points takes more physical 
insight into to the fracture forward modeling in that the medium and boundary conditions (BCs) are 
imposed explicitly. In other words, the equation of motion governs the motion outside of the 
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discontinuity interface (fracture), but non-welded contact boundary condition is applied at the 
discontinuity interface. In the 2D domain, the fractures are represented as interfaces satisfying the 
discontinuity of displacement and continuity traction BCs across interfaces at (x 1/2, z), and (x, z 1/2) 
respectively. 
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Examples 

Obviously, There are PP and PS reflections and amplitude variation with offsets from the fractures - 
even though there are no impedance contrasts in the homogenous medium (Figure 1). The direction of 
the fracture strongly affects the amplitudes of the PP and PS wave that perpendicularly polarized to the 
fracture having stronger amplitudes. For example, in horizontal fracture case, z-component PP wave 
have stronger amplitude than PS wave has (Figure 1, left) because vertical PP wave polarization is 
orthogonal to horizontal direction of the fracture. In the Figure 2, it is implied that seismic data are 
affected by fracture relative thickness. There are more effects once the direction of the wave 
prorogation and polarization are along the normal compliance of the fractures, because fracture relative 
thickness only contributes to normal compliance of the fracture.   

Conclusions 

Note that there is no impedance contrast in the homogeneous isotropic medium, but there are still 
reflections that are due to the displacement discontinuity across the fracture. Any kind of fracture can 
be indicated by the seismic data because of the direction of the wave propagation and the plane of the 

fracture for normal compliance.  

 

Figure 1: Horizontal (left), vertical (middle) and tilt (right) fractures model (bottom), wave field (middle) and 

seismograms from the fracture (top). The geometry and all parameters are described by Cui, et al. (2012)  
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Figure 2: Horizontal (left), vertical (middle) and tilt (right) fracture seismograms. The top data simulate fracture 

interface relative thickness approaching to zero. The bottom shows amplitude difference of the fracture relative 

thickness between 0 and 0,004 (detail in CREWES Research Repot (Cui, et al., 2012)). 
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