
 

 

  
GeoConvention 2013: Integration 1 

A look into Gassmann’s Equation 

Nawras Al-Khateb, CHORUS Heavy Oil Consortium, Department of Geoscience, University of Calgary 

nawras.alkhateb@ucalgary.ca 

Summary 

By describing the influence of the pore fluids on seismic properties, we attempt to provide a 
comprehensive understanding of Gassmann’s equation. Throughout the discussion of the rock, fluid, 
matrix and porous rock frame properties, we try to describe the assumptions and the limitations behind 
Gassmann’s equation, and summarize the steps of performing fluid substitutions by using Gassmann’s 
equation. 

Theory and/or Method 

The Influence of Pore Fluids on Seismic Properties: 

The seismic response of a reservoir is mainly controlled by the compressional and shear velocities, Vp 

and Vs respectively, along with the density. But Vp and Vs are not the best indicators of any fluid 

saturation effect because of the coupling between Vp and Vs through the shear modulus and bulk 

density:  
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Where K is bulk modulus, μ is shear modulus, M is the compressional modulus, and ρ is the bulk 

density.  

The bulk modulus is more sensitive to water saturation. The seismic wave causes an increase in 

pressure in the water filling the pores causing an increase in the bulk modulus. The shear modulus is 

not affected as the shear deformation does not produce a pore-volume change. Therefore any fluid 

saturation effect should correlate mainly to a change in the bulk modulus. 

Gassmanns’s Equation: 

Gassmanns’s equations relate the saturated bulk modulus of the rock to its porosity, the bulk modulus 
of the porous rock frame, the bulk modulus of the mineral matrix, and the bulk modulus of the pore-
filling fluids: 
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Where Ksat is the bulk modulus saturated with pore fluids, Ko is the bulk modulus of the mineral matrix, 

Kfl is the bulk modulus of the pore fluid, K* is the bulk modulus of the porous rock frame, (drained of 

any pore-filling fluid), and φ is the porosity. 

To apply the equation above, we first need to determine the bulk modulus of the porous rock frame 
(The bulk modulus of the rock drained of any pore-filling fluid), K*, then we calculate the bulk modulus 
of the rock saturated with any desired fluid. 

The dry frame bulk modulus, K*, truly represents the property of the rock with any amount of moisture 
present (Clark, et al., 1980). So the proper way to refer to K* is by the porous rock frame modulus. 

We now need to briefly define and discuss the bulk and shear moduli of the rock, and the bulk and 
shear moduli of the pore-filling fluids. 

Rock Properties: 

The bulk modulus of an isotropic rock is defined as the ratio of the hydrostatic stress to the volumetric 
strain. Bulk modulus values can be obtained either by laboratory measurements or analysis of wireline 
logs (e.g. sonic logs). 
The relationship below relates the bulk modulus of the rock to its compressional velocity, shear velocity 
and bulk density: 
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Where ρB is the bulk density of the rock, Vp is the compressional velocity, and Vs is its shear velocity 

 

If we use ρB, Vp and Vs from the log analysis, the calculated bulk modulus will represent Ksat, the bulk 

modulus of the rock with the in-situ pore-filling fluid, but if we use ρB, Vp and Vs from lab measurements 

of a dried core sample, and the calculated bulk modulus will represent K*. 
 
The shear modulus, G, is defined as the ratio of shear stress to shear strain and is giving by the 
following equation: 

 
  (5) 

 

Where ρB is the bulk density of the rock and Vs is the shear velocity. 

ρB and Vs can also be determined by log analysis or lab measurements, but the shear modulus is not 

sensitive to the fluid filling the pores, meaning means that Gsat = G (Biot, 1956). 

The bulk modulus is sensitive to pore-fluid composition, while the shear modulus is not, therefore, the 
shear modulus will not change during the fluid substitution. This concept is one of the fundamental 
concepts to the application of Gassmann’s equation. 

For the bulk density, ρB, the relationship below relates the porosity (φ), fluid density (ρft) and the grain 

(matrix) density (ρg) and allows us to calculate ρB: 

 
                                         

        (6) 
 

 
Porosity can be calculated from the core analysis or from the obtained from wireline logs. Log derived 
porosity represents an indirect measurement and a calibration to core porosity is recommended. 
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Fluid Properties: 

The pore space of a rock is typically occupied by two or more fluid phases, and we must calculate the 
bulk modulus and the density of each individual fluid and then the mix of the fluids keeping in mind one 
of the main assumptions of Gassmann’s equation, which is that the pores are connected and the 
pressure is at equilibrium. That assumes a uniform distribution of a homogenous fluid throughout the 
pore space. With this assumption in mind we can calculate the bulk modulus as: 
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Where Kfl is the bulk modulus of the fluid mixture, Ki is the bulk modulus of the individual phases, and 

Si is their saturation. 

For a simple hydrocarbon-water system, the equation above becomes: 
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Where Sw is the water saturation, Kw is the bulk modulus of the water, and Khc is the bulk modulus of 

the hydrocarbon 
 
The density of a fluid mixture can be calculated using: 
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Where Si is the saturation of the individual components, and ρi is the density of the individual 

components. 

For a simple hydrocarbon-water system, the above equation becomes: 

 

 (10) 

 

Where ρw is the density of the water, and ρhc is the density of the hydrocarbon.  

 

Matrix Properties: 

Before calculating the bulk modulus of the matrix, Ko, we should understand the mineral composition of 

the rock. Core analysis is used to obtain the information about the mineral composition. Logs can also 

be used for this purpose in case of simple mineralogy (Sand and Shale) to calculate Vshale. 

The Voigt-Reuss-Hill (VRH) average provides a simple way to calculate Ko, which is basically an 

average of the Reuss average and the Voigt average. For a simple mineralogy of sand and shale, the 
equations become: 
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Where Vclay is the volume of the clay, Vqtz = 1 - Vclay, Kclay and Kqtz are the bulk moduli of the clay and 

quartz respectively.  
 

Porous Rock Frame Properties: 

The bulk modulus of the porous rock frame, K*, is determined for the rock drained of any pore-filling 
fluid. K* that can be determined by the analysis on the controlled humidity-dried core, or by using 
wireline logs and re-arranging Gassmann’s equation to calculate K* as follows (Zhu and McMechan, 
1990): 
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Once determined, K* is held constant during the fluid substitution. 
The shear modulus, G, is also held constant during the fluid substitution because it is insensitive to the 
pore-fluid composition as we mentioned earlier. 
 

Gassmann’s Model Assumptions: 

The application of Gasmann’s equation is based on several assumptions, some of which we might have 
already mentioned while we were going over the properties of the rock, fluids, matrix and porous rock 
frame properties, and it’s very important for us to keep them in mind as we perform fluid substitutions: 

1. The porous material is isotropic, elastic, homogeneous and composed of one type of minerals. 
This assumption is violated if the rock is composed of multiple minerals with a large contrast is 
the elasticity of these minerals (Berge, 1998). 

2. The porosity remains constant, meaning that the porosity doesn’t change with different 
saturating fluids; In other words, no cementation or dissolution with changing the geochemical 
conditions in the pores. 

3. The pore space is well connected and in pressure equilibrium. This assumption is violated in 
low-porosity or shaley sands; carbonate rocks can be an example of a diverse pore types and 
low connectivity between the pores and applying Gassmann’s equation would yield unreliable 
results. 

4. The medium is a closed system with no pore-fluid movement across the boundaries. 
5. There is no chemical interactions between the fluids and the rock frame meaning that the shear 

modulus remains constant 
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6. Gassmann’s equation is valid only at a low frequency. Generally, at seismic frequencies (10-
100Hz), is  the error in using Gassmann's equation and may be negligible. However, higher 
frequencies will violate this assumption and another formulation by Biot (1956, 1962) must be 
used. 

 

Example 

The following graphs show how Vp and Vs change as the water saturation changes for a given 
reservoir properties: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The example above was generated using Gassmann’s equation and the following reservoir properties: 

 

In-Situ Vp (m/sec) 3500 ρ water (g/cm3
) 1.1 

In-Situ Vs (m/sec) 2000 ρ Oil(g/cm3
) 0.91 

ρB (g/cm3
) 2.2 Volume of clay (%) 25 

Porosity (%) 22 ρ clay (kg/m3) 2.58 

Initial Sw (%) 50 ρ quartz (kg/m3) 2.65 

Bulk modulus Water (Gpa) 2.2 Bulk modulus clay (Gpa) 14.9 

Bulk modulus Oil (Gpa) 1 Bulk modulus quartz (Gpa) 37 
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Conclusions 

Seismic became an important tool in reservoir monitoring and rock physics is the essential link 
connecting seismic data to reservoir characterization and the pore-filling in-situ fluids. Using 
Gassmann’s equation we can easily calculate the velocity changes resulting from different fluids filling 
the reservoir, and evaluate the response that should be obtained for a specific fluid or mix of fluids in 
the pores. However, the validity of the field environment is dependent on the underlying assumptions of 
Gassmann’s equation. These assumptions should be examined carefully, and failure to understand 
these assumptions could lead to inaccurate models.  
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