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Summary  

Interpretable, easy-to-calculate corrective terms are added to first order (i.e., Aki-Richards type) 
approximate solutions of the Zoeppritz equations. The corrections quantitatively and qualitatively 
account for the influence of large contrasts and target anelasticity in the precritical regime. The 
formulation permits several observations pertinent to AVO to be made, regarding  

1. The non-negligible importance of target VP to mode conversions, i.e., the θ dependence of RPS; 

2. The importance of the number VP/VS=2 to all elastic reflection coefficients; 

3. Wave scattering from contrasts in QP and QS alone; and  

4. The relationship between reciprocal quality factors and the frequency rate of change of 
anelastic reflection coefficients. 

The basics of the approach are summarized and the above points are illustrated with AVO curves 
calculated from plausible large contrast elastic and anelastic media.  

Introduction 

We consider the problem of AVO analysis (Castagna and Backus, 1993; Foster et al., 2010) when the 
contrast causing the reflection in question is large, and when the target medium is potentially anelastic. 
Both of these situations, alone and/or in combination, are outside the scope of standard linearized AVO 
theory. In this section we will discuss the two issues in turn, and outline our approach for modelling 
AVO curves under these circumstances. 
 
AVO for large contrasts 
 
When choosing tools for modeling AVO in media with large contrasts, we face a dilemma. There are 
two main classes of tool: 
 
1. Linearized reflection coefficient approximations such as those due to Aki and Richards (2002) 
(hereafter AR). These approximations permit quantitative calculation of R(θ), are relatively stable when 
inverted, and are expressed, conveniently, in terms of relative parameter changes as opposed to 
absolute values (Stolt and Weglein, 1985). Finally, the approximations are straightforward to analyze, 
readily supplying qualitative insight into the data-parameter relationship. However, their applicability 
fails, in both quantitative and qualitative domains, when contrasts grow. And, 
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2. The full Zoeppritz equations, which have the opposite attributes: from them we can calculate exact 
(plane wave) reflection coefficients, regardless of contrast. But, they deal in absolute parameter values, 
are notoriously unstable to invert, and are qualitatively opaque.  

The dilemma is that little in the way of middle ground between these two classes exists, and so when 
contrasts are large our available toolkit is diminished. To exemplify the problem, let us consider the AR 
approximation for the coefficient associated with P-S mode conversion: 

 

where k and δ are functions of incidence angles and average medium properties, and the ratios ∆VS /VS 
and ∆ρ /ρ measure the change in VS and density across the reflecting boundary (e.g., Stewart et al., 
2002). With this formula, values of RPS can be directly calculated from input incidence and target 
medium properties. However, of equal importance is the ease with which certain statements can be 
made about the relationship between RPS and the contrasts. For instance, what is the effect on RPS of a 
change in the target VP? None—there is no ∆VP/VP term in the approximation (though depending on 
how δ and k are defined there may be weak implicit dependence). This lack of dependence on VP is 
difficult to discern from an inspection of the full Zoeppritz equations.  The problem is, as contrasts grow, 
not only does the quantitative accuracy of formula (1) fail, but so does the qualitative accuracy of these 
kinds of statements. Consider Figure 1, in which exact RPS curves for three large contrast targets are 
considered. The target VP is different for each example, but otherwise the properties of the three media 
are identical. Linearly, we expect these curves to be identical, and yet, both at large angles (a) and 
small angles (b), we see significant differences. Though equation (1) is not wrong, per se, at these 
contrasts we have departed from its domain of accuracy. 

 
 
Figure 1: Dependence of RPS curves on target VP.  Three curves are plotted with the same incidence parameters, 
ρ0=2.0gm/cc, VP0=3km/s and VS0=1.5km/s, and the same target parameters ρ1=2.5gm/cc, VS1=2.3km/s.  Target 
VP1 varies: black curve 4.0km/s, blue curve 4.5km/s and red curve 5.0km/s.  In (a) the curve is plotted from 0 to 70 
degrees; in (b) from 0 to 20 degrees. 

 
Anelastic reflections 
 
A potentially important second order influence on seismic AVO is target anelasticity, which, though far 
from a new idea (e.g., White, 1965; Kjartansson, 1979), has grown in interest in recent years (e.g., 
Stovas and Ursin, 2001; Chapman et al., 2006; Odebeatu et al., 2006; Lines et al., 2008; Behura and 
Tsvankin, 2009). Although fundamental questions remain about correctly formulating anelastic 
reflection coefficients (Krebes and Daley, 2007), the problem is on relatively solid theoretical footing 
(Borcherdt, 2009), and with simple alterations of the Zoeppritz equations, displacement reflection 
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coefficients can be calculated for an elastic incidence medium overlying an anelastic target medium 
obeying a nearly-constant Q model. In Figure 2 we illustrate the potential importance of anelastic 
AVO/AVF (see also Innanen, 2011) with three RPP curves for the same anelastic target at different fixed 
frequencies. Under the right circumstances, target Q can have a significant effect. 
 
Objectives and approach 
 
When the medium property contrast causing a reflection is sufficiently large, linearization error and 
target anelasticity (if it is present) become significant to AVO modeling. We seek corrections to be 
added to AR type approximations, which (1) return accuracy to pre-critical calculations while 
maintaining their qualitative interpretability, and (2) include the influence of target anelasticity. While 
such second order approximations have been developed in the past (Stovas and Ursin, 2003), the 
focus has tended to be on increased numerical accuracy; the forms we derive follow instead from our 
interest in both qualitative and quantitative predictions. Once determined, the corrective terms permit a 
set of observations and predictions to be made, regarding: (i) the importance of target VP, (ii) the 
importance of a VP/VS ratio of 2, (iii) P-P reflections from contrasts in QP and QS only, (iv) mode con- 
versions from contrasts in QP and QS only, and (v) the relationship between reciprocal Q values and the 
frequency rate of change of the associated reflection coefficients.  
 
 

 
 
Figure 2: Importance of anelasticity to AVO.  RPP curves for incidence medium VP0=2.0km/s, VS0=1.5km/s and 
ρ0=2.0gm/cc, and target medium VP1=3.2km/s, VS1=1800km/s, =3.0gm/cc, QP1 = 10, and QS1=20, for three fixed 
frequencies: 100Hz (black), 40Hz (blue) and 5Hz (red). 
 

The Zoeppritz equations in matrix form 

In this section we lay out the Zoeppritz equations in a convenient matrix form, and then adapt them to 
admit anelastic target media. The matrix equation for a P-wave incident on an elastic target is due to 
Achenbach (1973), and has been used in more or less this form by several authors (e.g., Levin, 1986; 
Keys, 1989). The companion equation for an S-wave incident on an elastic target is also provided. The 
version we have derived can be shown to be consistent with the more complete and complex relations 
on pg. 140 of Aki and Richards (2002) and in Appendix A of Castagna and Backus (1993), though we 
use incidence angles. Consider a plane P-wave incident with angle θ on a horizontal interface, and a 
plane S-wave incident with angle φ on the same interface. We seek expressions for the four associated 
displacement reflection coefficients RPP, RPS, RSP, and RSS. Setting X = sinθ, Y = sinφ, and making use 
of the functions Γj=√1-j2X2, Γj=1 – 2j2X2, Γj’=√1-j2Y2 and Γj’=1 – 2j2Y2, the Zoeppritz equations may be 
written as 
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where 

 

and 

 

and where 

 

The incidence and target medium properties are contained in A-F: 

 

To admit anelastic target media, we adjust VP1 and VS1 following Aki and Richards (2002), such that C 
and F become 

 

where 
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and where ω is angular frequency, and ωP and ωS are reference frequencies. The quantities D=F B and 
E = CB′ are affected also. 

Solutions 

Any one of the four displacement reflection coefficients can be determined from the above equations 
using Cramer’s rule (Keys, 1989). Forming two auxiliary matrices PP and PS by replacing the first and 
then second columns of P with bP, and then forming a further two auxiliary matrices SS and SP by 
replacing the first and then second columns of S with bS, we have 

 

To expand these solutions in series about the perturbations experienced by each of the five medium 
parameters across the interface, we define 

 

Eliminating all target properties in equations (2) in favour of the above perturbations, and expanding the 
determinants in equations (6) in orders of these perturbations as well as sinθ and sinφ, we arrive at 
series expansions of RPP, RPS, RSP and RSS.  

The linear terms of these expansions are consistent with AR type approximations, and the second 
order terms are corrections whose importance grows with target contrast. Third order and higher terms 
are available also, but, as their number and complexity grow rapidly with order, and since we do not 
wish to lose the qualitative interpretability of the approximations, we will neglect them in this paper.  

In Figure 3 we illustrate the first and second order approximations for an anelastic target versus the 
exact solutions. The significant increase in accuracy, as well as remaining error (to be corrected with 
third order and higher terms), are both evident. In the next sections some examples of the predictions 
and observations emerging from this approach are provided. Because we truncate the expansions at 
low order in sinθ and sinφ, our analysis is restricted to pre-critical angles. This is justifiable as most 
AVO analysis occurs in this regime. 
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Figure 3: Exact (black), first order (blue) and second order (red) AVO curves for incidence medium VP0=2.0km/s, 
VS0 = 1.5km/s, ρ0=2.0gm/cc, and target medium VP1=2.2km/s, VS1=1.8km/s, ρ1= 3.0gm/cc, QP1=15, and QS1=10.  
All four reflection coefficients are plotted: (a) RPP, (b) RPS, (c) RSP and (d) RSS.  

Elastic AVO applications 

Converted wave AVO and target VP 

Letting QP1→∞ and QS1→∞, expanding RPS in series as outlined above, and retaining terms in sinθ, we 
determine first order terms of the RPS approximation and their second order corrections: 

 

where 

 

For small perturbations and small angles, the first two terms in equation (8) are consistent with AR 
(equation 1). Indeed, the two expressions are in qualitative agreement that target VP is inconsequential 
to RPS: there is no first order contribution from the aVP. As we have seen (Figure 1b), however, the 
accuracy of this statement fails as contrasts grow; dependence of RPS on target VP appears at all 
angles. 

At second order all terms contain products of perturbations such as aVP×aVS. They measure how 
relative changes in target properties couple in determining reflection strengths. The target VP, via aVP, 
does not alone influence RPS at second order. However, by equation (8) we discern that target VP does 
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nevertheless have an influence, through coupling with density and VS. In fact, since these terms are 
first order in sinθ, this influence is expected to be present at all nonzero angles.  In Figures 4a–b, the 
quantitative results of including the second order corrections are illustrated for two of the examples from 
Figure 1. The second order corrections are valid for small angles only, as these expansions were 
truncated beyond first order in sinθ, but below 20◦ the true variations of RPS with target VP appear to be 
well captured by equation (8).  

 

Figure 4: Exact (black), first order (blue) and second order (red) RPS approximations for varying target VP1. 
Incidence medium VP0=3.0km/s, VS0 = 1.5km/s, ρ0=2.0gm/cc, and target medium VS1=2.3km/s, ρ0= 2.5gm/cc, 
QP1=15, and QS1=10.  Target VP1 (a) 4.0km/s, (b) 4.5km/s. 

Coupling with density and the importance of VP/VS=2 

To the Zoeppritz equations, VP / VS=2 is a special number. The specialness, which is connected to 
coupling between density and VP & VS, becomes particularly apparent at large contrast, when second 
order corrective terms of the type we are discussing in this paper are significant. By inspection, two of 
the five second order correction terms in equation (8) are proportional to the quantity 

 

which is zero when the VP-VS ratio in the incidence medium is 2. These two terms (which involve aρ 
×aVP and aρ ×aVS) have in common that they measure the coupling between density (aρ) and the other 
parameter changes (aVP and aVS). This is a persistent phenomenon. For all four of RPP, RPS, RSP, and 
RSS, all nonzero second order terms coupling aρ with other perturbations are proportional to this 
quantity. If VP0 /VS0=2, these terms, which represent a full third of the elastic second order corrections, 
vanish, changing the way parameter contrasts can alter reflection coefficients, and dramatically 
simplifying the mathematical “landscape” of the Zoeppritz equations. AVO analysis is known to simplify 
when VP /VS=2. Furthermore, in discussions of these matters it is often apparent that there is a 
connection with density. For instance, in deriving their fluid line, Foster et al. (2010) explain that VP/VS= 
2 simplifies the slope of RPP vs. sin2θ.  

From the point of view of the current formulation, these two facts are “explained” as being due to the 
parameter coupling between density and all other parameters. If there is no density contrast, there is no 
coupling between VP, VS and ρ, trivially. However, the less trivial case in which there are strong density 
contrasts, but VP0/VS0=2,is seen to also correspond to a decoupling of the density contrasts with those 
of VP and VS.  
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Anelastic applications 

 

P-P reflections from QP and QS contrasts 

Lines et al. (2008) have discussed the possibility of reflections from targets across which Q alone 
undergoes a contrast. This possibility has been confirmed in laboratory environments (Bourbie and Nur, 
1984; Lines et al., 2012), and though the latter results may raise as many interesting questions as they 
answer, we can confirm that the expansion of RPP for anelastic targets is in agreement with their basic 
observation. Truncating the anelastic approximation for RPP beyond first order, and simulating a 
contrast in QP and QS only by setting aVP =aVS =aρ =0, we obtain 

 

confirming that to first order, QP and QS contrasts can cause a P-P reflection. We may further confirm 
that either QP or QS can, alone, create a P-P reflection, though this may be primarily of mathematical 
interest, as QP and QS co-vary for most real Earth materials (e.g., Waters, 1978). In Figure 5a, an 
example for plausible incidence and target medium properties is illustrated. Whether the average 
discrepancy constitutes a true anomaly is therefore uncertain.  However, we point to peaks in the red 
curve, which are present in both components, and which are unlikely to be matched by the blue curve 
regardless of scale factor, as representing avenues for further investigation. 

 

Mode conversions from QS and QP contrasts 

Continuing in the vein of “reflections from Q contrasts”, the current formulation also allows us to predict 
the generation of mode conversions from targets across which quality factors alone undergo a contrast. 
Truncating the anelastic RPS approximation beyond first order and again setting aVP=aVS=aρ=0, we have 

 

From this we may conclude that an elastic incidence medium, which is suddenly interrupted by a 
contrast in QS alone, can cause a mode conversion to first order. A similar contrast in QP cannot, to first 
order, cause such a conversion, but if QP and QS both undergo a contrast, the former can influence the 
amplitude of the conversion at second order. This latter influence should be expected to be minimal, 
except for contrasts in which the target QP and QS are both very small. In Figure 5b, an example for 
plausible incidence and target medium properties is illustrated. 
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Figure 5: Exact (black) and first order approximations (blue) of reflections from contrasts in QP and QS: (a) RPP, 
and (b) RPS.  Medium properties VP0=VP1=2.0km/s, VS0=VS1=1.5km/s, and ρ0=ρ1=2.0gm/cc.  Target QP1 = 15 and 
QS1 = 10. 

QP and QS and the frequency rate of change of RPP, RPS and RSS 

Anelastic AVO provides several modes for inversion, in particular for target Q estimation (Innanen, 
2011). The reflection coefficients associated with an anelastic boundary are in general complex and 
frequency dependent. Within the model we have adopted, QP and QS alone are responsible for the 
frequency dependence of RPP, RPS, RSP, and RSS. Therefore, to first order, differences of anelastic 
reflection coefficients across frequency are sensitive to variations in these parameters, and insensitive 
to VP, VS and ρ. We expand RPP, RPS, and RSS as discussed above and truncate beyond first order in all 
five anelastic perturbations. Taking derivatives of these coefficients with respect to frequency 
extinguishes the influence of aVP, aVS and aρ. Thereafter it is straightforward to prove that the reciprocal 
quality factors in the target medium are given by 

 

The two QS formulas in equations (13)–(14) have realizations for every angle of data available. In 
contrast, we have fixed θ = 0 for the P-wave QP case, as under these conditions the formula is helpfully 
simplified. In Figure 6a-b, the recovery of QS = 10 using equations (13)–(14) is illustrated. Linearization 
error grows with decreasing frequencies, where the perturbation is larger because of its dependence on 
dispersion. 

Conclusions 

A simple-to-use truncated expansion of the anelastic Zoeppritz equations adds a small number of 
second order corrective terms to Aki- Richards type linearizations. These corrective terms expose the 
coupling between contrasts in VP, VS and ρ (and QP, QS if desired) in determining the four 
elastic/anelastic reflection coefficients. Because of the qualitative interpretability of the corrections, we 
may arrive at some theoretical justification for several “large contrast, low angle” AVO phenomena, 
such as: (1) the importance of target VP to mode conversions, (2) the importance of the number VP/VS= 
2, (3) reflections and mode conversions from contrasts in QP and QS only, and (4) inverse relations 
between QP, QS and the frequency rate of change of anelastic reflection strengths. 
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Figure 6: Recovery of target QS through calculation of rate of change of R with frequency.  (a) Real parts of RPS 
and RSS (red and blue respectively) as functions of frequency. (b) Calculation of scaled derivatives in equations 
(13)-(14) in comparison with the actual QS value.  Medium properties VP0=2.0km/s, VP1=2.2km/s, VS0=1.5km/s and 
ρ0=2.0gm/cc and ρ1=2.5gm/cc.  Target QP1=1000 and QS1=10. 

Acknowledgements 

This work was funded by the sponsors of CREWES and additionally by an NSERC Discovery grant. 
This paper was originally presented at the SEG Annual Meeting in Las Vegas, NV in Nov 2012.  
Satinder Chopra is thanked for the invitation to present this work at GeoConvention 2013.  

 
References 

Achenbach, J. D., 1973, Wave propagation in elastic solids: North- Holland, 1st edition.  

Aki, K. and P. G. Richards, 2002, Quantitative seismology: University Science Books, 2nd edition.  

Behura, J. and I. Tsvankin, 2009, Reflection coefficients in attenua- tive anisotropic media, in 79th Annual Internat. Mtg., Soc. 
Expl. Geophys., Expanded Abstracts. Soc. Expl. Geophys. 

Borcherdt, R. D., 2009, Viscoelastic waves in layered media: Cam- bridge University Press. 

 ourbie  ,  . and A.  ur, 198 ,  ffects of attenuation on reflections: ex- perimental test: Journal of Geophysical Research, 89, 
6179–6202. 

Castagna, J. P. and M. Backus, 1993, Offset-dependent reflectivity: theory and practice of AVO analysis: SEG. 



  
 

GeoConvention 2013: Integration 11 

Chapman, M., E. Liu, and X. Y. Li, 2006, The influence of fluid- sensitive dispersion and attenuation on AVO analysis: 
Geophysical  Journal International, 167, 89–105. 

Foster, D. J., R. G. Keys, and F. D. Lane, 2010, Intepretation of AVO  anomalies: Geophysics, 75, 75A3–75A13. 

Innanen, K. A., 2011, Inversion of the seismic AVF/AVA signatures of highly attenuative targets: Geophysics, 76, R1–R11. 

Keys, R. G., 1989, Polarity reversals in reflections from layered media: Geophysics, 54, 900–905. 

Kjartansson, E., 1979, Attenuation of seismic waves in rocks and applications in energy exploration: PhD thesis, Stanford 
University. 

Krebes, E. S. and P. F. Daley, 2007, Difficulties with computing anelas- tic plane-wave reflection and transmission coefficients: 
Geophysical Journal International, 170, 205–216. 

Levin, F. K., 1986, When reflection coefficients are zero: Geophysics, 51, 736–741. 

Lines, L. R., K. A. Innanen, F. Vashegani, J. Wong, C. Sondergeld, S. 

 reitel, and  . J. Ulrych, 2012,  xperimental confirmation of “Re- flections on Q”, in Proceedings of the 82nd Annual Meeting 
of the Society of Exploration Geophysicists, Las Vegas, NV SEG. 

Lines, L. R., F. Vasheghani, and S. Treitel, 2008, Reflections on Q: CSEG Recorder, Dec, 36–38. 

Odebeatu, E., J. Zhang, M. Chapman, E. Liu, and X. Y. Li, 2006, Application of spectral decomposition to detection of 
dispersion anomalies associated with gas saturation: The Leading Edge, 2, 206–210. 

Stewart, R. R., J. E. Gaiser, R. J. Brown, and D. C. Lawton, 2002, Tu- torial: converted-wave seismic exploration: methods: 
Geophysics, 67, 1348–1363. 

Stolt, R. H. and A. B. Weglein, 1985, Migration and inversion of seis- mic data: Geophysics, 50, 2458–2472. 

Stovas, A. and B. Ursin, 2001, Second-order approximations of the reflection and transmission coefficients between two 
viscoelastic isotropic media: Journal of Seismic Exploration, 9, 223–233. 

——– 2003, Reflection and transmission responses of layered trans- versely isotropic viscoelastic media: Geophysical 
Prospecting, 51, 447–477. 

Waters, K. H., 1978, Reflection seismology: John Wiley & Sons, Inc. 

White, J. E., 1965, Reflections from lossy media: Journal of the Acoustical Society of America, 38, 604–607. 


