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Summary  

In the field of data integration, KPCA is regarded as an excellent technique in capturing and extracting 
the most principle information for multi-source of data. As a learning mechanism, KPCA usually prefers 
large training dataset to enhance its generalization. However, the involved computation costs for large 
datasets could probably become nearly-unaffordable. Currently, it is a major contradiction for KPCA, 
and is severely impeding its practical applications. For this reason, this paper builds a framework of 
sparse KPCA by introducing a sparse kernel skill, which could greatly streamline the training dataset 
while effectively preserving its representative information. With this method, the calculation efficiency 
for seismic denoising is raised nearly by 7 times than the traditional KPCA, and a much higher fitting 
rate (98.81%) on fluid identification is also achieved as well, even with much fewer training nodes. At 
present, results with this method is sufficiently rewarding and encouraging enough to motivate further 
study. Probably, this method would bring meaningful changes on KPCA's theory and applications in 
geophysical exploration world. 

Introduction 

In the past decade, kernel principal component analysis (KPCA) emerged along with the development 
of support vector machine, where kernel's value is re-emphasized. Compared with PCA, KPCA is 
regarded to be more sufficient and powerful in tracking and extracting the underlying nonlinear 
characteristics, which has been fully demonstrated in the seismic attribute optimization (Zhang et al., 
2009; Liu et al. 2011).  

However, unlike PCA, the Gram matrix in KPCA is much larger, and the nearly-unaffordable 
computation costs involved in matrix decomposition is severely impeding its further applications. 
Moreover, intermediate results in feature space (e.g. kernel principal components and eigenvectors)can 
hardly be transformed back to the original input space for subsequent processing and analysis. Due to 
these intrinsic defects, KPCA at present mainly rests on attributes optimization in geophysical 
exploration, while other aspects are seldom touched. Aimed at enlarging its applications, this paper 
attempts to boost the calculation efficiency by introducing a sparse kernel skill, while multidimensional 
scaling (MDS) is also proposed to bridge the differences between the feature space and input space. It 
is no doubt that these improvements will bring profound influences on KPCA's theoryand applications in 
seismic exploration field. 

Framework of traditional KPCA 

As like traditional PCA, KPCA should calculate the eigenvectors for its covariance matrix C
F
in feature 

space F , i.e.  
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The stands for the mapping function from the input space to the feature space. In fact, we can 

equivalently accomplish the above decomposition task by employing kernel tricks (without knowing the 
exact mapping function). Actually, any symmetric function that satisfies the Mercer Condition could be 
viewed as a kernel function for some feature space (Mercer, 1909; Taylor and Cristianini, 2004). 
Among these kernel functions, Gauss kernel is one of most frequently engaged one in KPCA, and all 
the work in this paper is established on this kernel function 
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According to reproducing kernel theory, the eigenvector
i

v must exist in the hyperspace expanded by 

the array 
1 2 n

( ), ( ), ( )x x x   , and is formulated as 
1 2 n

[ ( ) ( ) ( )]
i i
v x x x    , where

i
 is the related 

coefficient vector. After a series of formulation (Schölkopf et al., 1997), we will finally arrive at  
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Here K represent the Gram matrix formed by ( , )
i j

k x x  and falls into the symmetric positive semi-definite 

category. By decomposing this matrix, all eigenvectors are then obtained. Actually, kernel components 
are the projection results on these eigenvectors in feature space. Suppose Y is the test vector whose 

mapped vector in feature space is given by 
1 2 n

[ ( ), ( ), ( )]y y y   , then its projected result on 
i

v  is  
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where KP indicates the corresponding kernel component. Moreover, apart from the usage of 

normalization in equation (4), the eigenvalue
i

 could also indicate the importance of the kernel 

component. Usually, the first m kernel components could reflect the main information of training 

dataset, and m is decided by the accumulative contribution rate: 
1 1

m d

i i

i i 

    ,where  generally falls 

into 0.85~0.95. 
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Figure 1: Sketch map of KPCA 

Like PCA, KPCA also tends to maximize the variance of transformed results. As Figure 1 shows, KPCA 
could generally be viewed as an implementation of PCA in feature space, and its unique attraction 
largely rests on the kernel tactics, which could induce the originally-scattered samples to aggregate 
along the eigenvector direction. At this step, we can make the following remark. 
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Remark 1    In spite of the advantages in handling nonlinear problems, the computation efficiency of 
KPCA could probably slow down to a glacial pace when the training dataset is large. Firstly, dealing 
with large training dataset demands a significant amount of computing resources to calculate and 
eigen-decompose the Gram matrix. Besides, every time for a test vector, the kernel function between 
this vector and each training vector should necessarily be computed. However, as a learning method, 
KPCA yet prefers large training dataset to enhance its generalization capability. It is a contradiction for 
KPCA. 

Remark 2  One merit of kernel tactic lies in that it enables the implementation of KPCA without 
knowing the exact mapping function, but this advantage may somewhat cast a new problem that the 
intermediate results generated in feature space (e.g. kernel principal components and eigenvectors) 
cannot be transformed back to the original input space for subsequent processing. Probably, their 'pre-
images' do not exist in the input space at all, and could only be approached by approximate solutions 
(Kwok and Tsang, 2004). This may explain the reason why KPCA can hardly been applied on seismic 
denoising.  

Sparse Kernel Skill 

The data information that we encounter in real world is often characterized by dynamism, uncertainty 
and sparsity (Xu et al., 2007). Sparsity implies that the entire training dataset could be represented by a 
few 'distinctive' ones, which are known as the training nodes. And the sparse kernel skill attempts to 
extract these distinctive nodes and replace the entire training dataset with these nodes, in an attempt to 
streamline and optimize KPCA's performance.  

Let { ( ) , 1, ,
i

i n x F } be the entire training dataset of feature space. As we mentioned before, 

eigenvectors can be treated as a combination of all these training vectors. Assuming that only one 

training vector ( )
i

x is used for reconstruction, the eigen-equation is accordingly transformed into 
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is the centralized kernel vector of ( )

i
x , while

i
 represents the 

variance obtained by projecting ( )
i

x  on eigenvectors v . In light of the character of maximizing 

variance, a larger
i

 should means that ( )
i

x is much closer to v . Select the training vector with largest 

  as the first training node, then determine the rest nodes on the principle of cosine distance, i.e. 
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Minimum cosine distance demonstrates that the selected node is of the greatest difference with these 
already-selected ones, which ensures that extracted nodes could basically represent the entire training 
dataset (Xu, 2009). In most cases, the training nodes only account for 5%~20% of entire training 
dataset. It is obvious that application of sparse kernel skill would bring significant improvements on the 
computational efficiency of KPCA.  

Application on seismic denoising 

In seismic denoising, KPCA ought to show remarkable advantages in preserving the important while 
suppressing the trivial (such as random noise). Unfortunately, the low computing efficiency and 
difficulties in estimating the 'pre-image' impede its application value. Therefore, the sparse kernel skill is 
mainly designed to answer the former challenge, while a multi-dimensional scaling (MDS) for the later. 
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The MDS is beyond the discussion of this paper, one can refer to Kwok's paper (Kwok and Tsang, 
2004) for details. 
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Figure 2: Original seismic section and denoised results with different ACR 

(Note: ACR of 100% means no denoising but just reconstruction with extracted nodes) 

In practice, we choose an arbitrary line from the well area ZG8, a carbonate reservoir in west China. 
The original seismic section of this line is given in Figure2 (a), where the favorable carbonate reservoirs 
are characterized by 'bead-like' reflections on seismic section. Although this is a relative small section 
of 405 traces with 500 samples, computational speed of ordinary KPCA is quite slow. By employing the 
sparse kernel skill, we find that 100 nodes are sufficient enough for this case. On extracting these 
nodes, seismic denoising could be approached through MDS by adjusting the accumulative contribution 
rate (ACR). It is worth noting that the reconstructed result in Figure 2(b) demonstrates that 100 nodes 
could almost completely reconstruct the whole section without losing any important information. After 
several tests and comparisons, an ACR of 95% is determined as the optimum parameter for denoising, 
whose result is shown in Figure 2(c). More importantly, the calculation efficiency is raised nearly by 7 
times. 

Application on fluid identification 

Fluid identification is essentially a classification task, for which KPCA is more qualified than PCA. As 
Figure 3 shows, the basic mechanism (Schölkopf et al., 1997; Dejtrakulwong et al., 2012) can be 
summarized as 3 steps: (1) calculate the kernel components for available training datasets, then form 
the standard kernel matrix for each fluid class; (2) calculate the kernel component vector for test 
data;(3) measure the 'distance' between the test data's kernel component vector and each class's 
kernel matrix, and classify the test data's fluid type by applying a distance sorter.  

In this paper, we employ the minimum Mahalanobis distance sorter. Let 
k

x  and 
k

  be the center vector 

and covariance matrix for the standard kernel matrix of a specific class (suppose the kth class), then 
Mahalanobis distance for test data y is defined as  

2 1
( ) ( )

T

k k k k
d


  y x y x                                                          (7) 
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Figure 3: Workflow of fluid identification based on KPCA 

This time, the data we used comes from the fluid substitution results on part of a measured porosity log, 
whose porosity varies between 2.52% and 10.54%. There are 4 fluid classes, and each class owns 129 
training vectors, which correspondingly consist of the most common-used attributes in fluid 
identification (namely, PI, SI, Vp/Vs, Vp, Vs, density, Poisson ratio, LR and MR). And we re-examine 
these 516 training vector's class based on the 180 training nodes that extracted with sparse kernel skill. 
The obtained Mahalanobis distance (for KPCA) is shown in Figure 4(b). For contrast, the Mahalanobis 
distance in PCA is given in Figure 4(a). 
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Figure 4: Observed Mahalanobis distance in both PCA (a) and KPCA (b) 

Figure 4 (a) shows that Mahalanobis distance is perfectly sorted, i.e. the minimum distance 
corresponds to its due fluid type, and the overall fitting rate reaches 98.81%, much higher than that 
derived from PCA (76.48%). These results not only demonstrate that KPCA do have great advantages 
in identifying different fluid types than PCA, but more importantly reconfirm the feasibility of sparse 
KPCA in fluid identification.  

Conclusions 

In this paper, we focus on the construction for a sparse kernel component analysis method, while the 
two application aspects are mainly designed to justify and support this new method. Due to the sparse 
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kernel skill, the training dataset could be greatly streamlined and refined, with significant information 
well-preserved and computing efficiency dramatically speeded up. At present, results with this method 
is sufficiently rewarding and encouraging enough to motivate further study. It is entirely foreseeable that 
this method would bring about beneficial changes for overall situation of KPCA, especially in handling 
the huge dataset of exploration world.  
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