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Summary

Converted waves suffer from a low signal to noise ratio and stronger aliasing than P-waves. These charac-
teristics are problematic when an adjoint migration operator is applied to the data. In this article we apply
preconditioned least squares migration using a pre-stack Kirchhoff time migration operator to converted wave
data. To precondition the inversion we apply a five-point triangle smoothing operator on the offset dimension.
We show a synthetic data example in which the input data have been regularly decimated. We find several
advantages to our approach when compared with Fourier regularization plus migration.

Introduction

Migration is an important step in the processing of converted waves. Asymmetric source and receiver side ray-
paths make binning and stacking these data particularly inapt. Kirchhoff migration, using the adjoint operator,
aims to solve the migration problem by integration. Because we record discrete data with a finite aperture and
aim to solve for a discrete earth model integration is replaced with finite discrete summation. Another problem
with Kirchhoff methods relates to the artifacts created by spreading amplitudes over travel time curves. While
typically the bulk of the energy constructively sums in place of true reflectors, a great deal of energy persists
in the form of "smiles" or migration artifacts. Least squares migration attempts to deal with these problems.
Instead of simply using the adjoint operator, the inverse is sought by attempting to match the data predicted
by the model with the observed data. Significant work has been done in the field of least squares migration.
Nemeth et al. (1999) use a Kirchhoff operator to perform least squares migration of incomplete surface seismic
and Vertical Seismic Profile (VSP) data. They find that the migration results are more focussed and suffer less
from acquisition footprint compared with the adjoint operation. Kuehl and Sacchi (2003) use least squares
migration with a Double Square Root (DSR) operator to express reflectivity as a function of subsurface position
and ray parameter to be used for further Amplitude Versus reflection Angle (AVA) inversion. Rebollo and Sac-
chi (2010) use a Kirchhoff time migration operator with dip-oriented filtering to attenuate artifacts, while Guitton
et al. (2007) use least squares migration to attenuate low frequency Reverse Time Migration (RTM) artifacts
due to crosscorrelation of diving-waves, head-waves, or backscattered waves. The attenuation of artifacts is
achieved via preconditioning using prediction-error filters.

While prior efforts have focussed primarily on P-wave seismic data, this article considers the application of least
squares migration to converted waves. Converted waves suffer from some additional complications compared
to P-waves. The signal to noise ratio can be significantly lower, and the lower velocity receiver side ray path
makes the aliasing frequency of converted waves lower than their P-wave counterpart. One way to deal with
these issues is to regularize the data prior to imaging (Cary and Zhang, 2011b). In this contribution we try
to deal with these issues in the imaging step via preconditioned least squares migration. We show that the
method can be used to either regularize the data, or to migrate the data. For regularization, the algorithm
has some unique advantages over other methods, namely, it can handle irregular trace spacing (binning is
not required), it can reconstruct weak diffraction energy accurately, and it can reconstruct regular or irregularly
missing traces equally well. To illustrate these advantages we compare the least squares migration approach
with Minimum Weighted Norm Interpolation (MWNI) for a synthetic data example where the input data have
been regularly decimated.
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Theory

Pre-Stack Time Migration of converted waves

The Kirchhoff operator is currently the most widely used migration operator. One of the main reasons for
the algorithm’s popularity lies in its simplicity. Kirchhoff migration involves integrating trace amplitudes over a
reflectivity model. After travel times and Kirchhoff weights have been calculated, the migration process can be
written as a trace by trace process (Audebert, 2001). This means that a small amount of memory is required
for this process, and perhaps more importantly the task is highly parallelizable. The speed of this algorithm
also makes it possible to perform iterative velocity analysis.

In the case of least squares migration the forward and adjoint migration operators are required. Given the
simplicity of the Kirchhoff adjoint operator, the forward operator is straightforward to define.

In addition to its simplicity, the Kirchhoff operator also suffers from artifacts that could benefit from LS migration.
Preconditioning that aims to mitigate these artifacts will be shown later in this paper.

The basis of Kirchhoff migration is the Huygen-Fresnel principle which states when a disturbance reaches a
point this point behaves as a secondary source and that summing the waves from this source can be used to
determine the form of the wave at a later time.

The forward Kirchhoff operator can be written

d(sx,gx, td) = ∑
x

∑
t

m(tm,x,h)W (1)

where d(td ,sx,gx) are the data, m(tm,x,h) is the model, and W are the 2.5D converted wave Kirchhoff PSTM
weights. Here tm is the time from zero offset to the reflector in the model space, and td is the corresponding
travel time that is the sum of two terms: ts, the time a ray takes to travel from the source to the scanned model
position (using the P-wave velocity), and tg, the time a ray takes to travel back to the receiver (using the S-wave
velocity). The adjoint, or migration operator can be written

m(tm,x,h) = ∑
Ntrace

d(sx,gx, td)W. (2)

To calculate td = ts + tg, we use ts =
√

t2
s0 +( x−sx

vp
)2 and tg =

√
t2
g0 +( x−gx

vs
)2, where ts0 =

tm
(1+γ) , tg0 =

tmγ

(1+γ) , and γ is

the vp/vs ratio. In the case of anisotropic wave propogation higher order terms are added to these equations
(Wang et al., 2013), but here we assume isotropy.

The 2.5D converted wave Kirchhoff weights are calculated via W = z(1+cosθ)

2v3
p

√
1+2γcosθ+γ2

(
tg

γ2ts
+ γ2ts

tg
)

√
γ2ts+tg

tstg
(Cary

and Zhang, 2011a), where z is the image depth (estimated using vp and ts0), and θ is the opening angle of the
downgoing P-wave and upgoing S-wave raypaths. The cosine of the opening angle, θ , can be calculated using
the sum of the angle of the source-side ray with the vertical, θs, and the angle of the receiver side raypath path
with the vertical, θg as cos(θs +θg) = cosθscosθg− sinθssinθg, where cosθs =

z
vpts

, cosθg =
z

vstg
, sinθs =

x−sx
vpts

, and

sinθg =
gx−x
vstg

. If vs is replaced with the P-wave velocity these equations break down to the conventional P-wave
Kirchhoff migration equations.

In this paper we implement parallelization over offsets classes using a cluster with shared memory architecture.

In figure 1 the forward operator, L is applied to an impulse in model space (a). The forward operator diffracts the
model into data space (b), while the adjoint collapses the diffractions back into model space. It is apparent that
result of the adjoint operation (c) is not equivalent to the original reflectivity (a). This is because the Kirchhoff
operator is not orthogonal (LT 6= L−1).
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Figure 1 An impulse in model space (a), the effect of spraying the model into the data domain using
the forward operator (b), and migration of the data using the adjoint operator (c). Notice that the
adjoint operation does not recover the original impulse. This is because the Kirchhoff operator is not
orthogonal.

Least squares migration

Given the forward Kirchhoff operator, L, data can be generated from a reflectivity model. In seismic migration
the goal is to collapse diffractions to the position where reflection occurred in the subsurface. To do this we
should use the inverse of the forward operator, L−1. Typically for imaging the inverse is approximated by the
adjoint operator, LT . While the adjoint can produce reasonable structural images, the recovered model is not
true amplitude in the sense that applying the forward operator will not recover the recorded data to a reasonable
degree, especially if the acquisition geometry contains significant holes, or irregular geometry (Nemeth et al.,
1999). Least squares migration aims to recover the model, m, such that the application of the forward operator
reproduces the recorded data. The system of equations for least squares migration are Lm = d+n, where d
are the observed data and n is noise. The minimum norm solution comes from minimizing the cost function
J = ||Lm− d||22 + λ 2||m||22, where m is the reflectivity model to be recovered, and λ is a trade-off parameter
which controls the under-fitting or over-fitting to the observed data, d.

The minimum norm solution to this cost function is m̂ = (LT L+λ 2I)−1LT d. Typically the size of the model is
greater than the size of the data which makes this an underdetermined problem. The next section discusses
methods to precondition the problem in order to narrow down the range of solutions.

Preconditioning

To obtain a smooth solution a derivative operator can be applied to the model. Sharp changes in the model
are then penalized in the cost function resulting in a smoother set of solutions. This is written J = ||Lm−
d||22 +λ 2||Dm||22, where D can be referred to as a "bad pass" operator, such as a derivative across the offset
dimension of the migrated gathers.

An alternative way to write this is via a change of variables z = Dm, giving J = ||LD−1z−d||22 +λ 2||z||22. If the
derivative operator, D, acts as a high-pass operator then its inverse, D−1 acts as a low-pass operator (Wang,
2005). It becomes clear that operators placed into the right hand side (model-space part) of the cost function
are "bad-pass" operators that emphasize parts of the model we wish to penalize, while terms on the left hand
side (data-space) are "good-pass" operators that emphasize parts of the model we wish to reinforce.

This cost function can be incorporated into a Conjugate Gradients framework such as given by (Scales, 1987),
by simply concatenating the preconditioning operator, D, with the migration operator, L, to form the new oper-
ator L̃ = LD−1, with adjoint L̃T = (D−1)T LT .

The good pass operator used in this study is a five-point triangle filter, P, which is applied across offsets within
each migrated gather. Unlike a rectangular filter, a triangle filter gives higher weight to the central point on the
filter compared to the edges. When smoothing a signal of length 8 the forward and adjoint operators can be
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written in matrix form as

P = 1
9 ·



3 4 2 0 0 0 0 0
2 3 2 2 0 0 0 0
1 2 3 2 1 0 0 0
0 1 2 3 2 1 0 0
0 0 1 2 3 2 1 0
0 0 0 1 2 3 2 1
0 0 0 0 2 2 3 2
0 0 0 0 0 2 4 3


, and PT = 1

9 ·



3 2 1 0 0 0 0 0
4 3 2 1 0 0 0 0
2 2 3 2 1 0 0 0
0 2 2 3 2 1 0 0
0 0 1 2 3 2 2 0
0 0 0 1 2 3 2 2
0 0 0 0 1 2 3 4
0 0 0 0 0 1 2 3


.

Note the action of the forward operator on the edges of the gather (low and high offsets). At the edge of the
gather the offsets on the missing side are replicated before smoothing to minimize edge effects. This operator
has very few non-zero entries making it computationally inexpensive to implement in operator form. To ensure
that the forward adjoint pair are written correctly, the dot product test is performed. Two vectors of random
numbers are created, one with the dimension of the data, d1, and one with the dimension of the model, m1. d1
is passed through the concatenation of adjoint operators, PTLT, to generate m2, while m1 is passed through
the concatenation of forward operators, LP, to generate d2. The inner products < d1,d2 > and < m1,m2 > are
compared and found to agree within machine precision.

Examples

In this article we consider a synthetic data example generated using the "sigmoid" model (Claerbout, 1992)
and the forward converted wave PSTM operator, L. Data are generated with a 4ms sample rate, and a 10m
Asymptotic Conversion Point (ACP) increment. The data contain offsets from 100-2500m with a 100m offset
increment. Note that data are shown at a constant offset of 1000m.

In figure 2 the input data (a) are regularly decimated on the ACP and offset axes by zeroing three traces
between every live trace (b). The data are then reconstructed using a Fourier reconstruction method (Minimum
Weighted Norm Interpolation (MWNI)) (c). In this case Fourier reconstruction struggles as the aliasing created
by the zeroing pattern has stronger energy than desired signal. The diffractions and conflicting dips appear to
be better reconstructed by synthesizing the data after least squares migration (d).

Figure 3 shows the reflectivities corresponding to the data shown in figure 2. Applying migration directly to
the decimated data (b), or to the interpolated data (c) does not properly resolve the structure, while least
squares migration (figure 3(d)) does a better job of recovering the true reflectivity. The inversion converges
after approximately 14 iterations of Conjugate Gradients.

Conclusions

In this article we apply least squares migration to converted wave seismic data. We use a converted wave pre-
stack time demigration operator and its adjoint in a Conjugate Gradients algorithm to solve for the reflectivity
that best fits the data, while minimizing a norm on the model (migrated gathers). We precondition the problem
by including a five-point triangle smoothing operator which acts on the offset dimension of the migrated gathers.
We consider a synthetic data example in which traces are regularly decimated in data space. We find an
advantage both in the reconstruction of data and the migration of the data when using the least squares
migration algorithm compared with Fourier reconstruction plus migration using the adjoint operator. Following
the advice of Gray et al. (2001), namely, that a more accurate forward modelling operator should be used
compared to the migration operator being tested, we plan to test this algorithm on data generated using elastic
finite differences to further evaluate its merit.
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Figure 2 Reconstruction of regularly decimated data. True data (a), regularly decimated data (b),
reconstructed data using MWNI (c), and data reconstructed using least squares migration (d).
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Figure 3 Migration of regularly decimated data. True reflectivity model (a), migration of regularly
decimated data (b), migration of data that has been reconstructed using MWNI (c), and least squares
migration (d).
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