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Summary 

Scatter point interpolation plays a significant role in bidimensional empirical mode decomposition (BEMD) 
implementation. The type of interpolant has a large influence on the final decomposition results and 
should ideally be adapted to the target image. Fortunately,  interpolation artifacts can be reduced by 
bidimensional ensemble empirical mode decomposition (BEEMD). 

Introduction 

The empirical mode decomposition (EMD) method developed by Huang et al. (1998) is a powerful signal 
analysis technique for non-stationary and nonlinear systems. EMD decomposes a signal into a sum of 
intrinsic oscillatory components, called Intrinsic Mode Functions (IMFs). Each IMF has different frequency 
components, potentially highlighting different geologic and stratigraphic information (Magrin-Chagnolleau 
& Baraniuk, 1999; Han & Van der Baan, 2011). Furthermore, high-resolution time-frequency analysis is 
possible by combining EMD with the instantaneous frequency. The resulting time-frequency resolution 
promises to be significantly higher than that obtained using traditional time-frequency analysis tools, such 
as short time Fourier and wavelet transforms (Han and Van der Baan, 2013). Furthermore, Bekara & Van 
der Baan (2009) utilize EMD in frequency-distance (f-x) domain to suppress the random and coherent 
noise. 

As a 2D extension of EMD, Linderhed (2002,2005) and Nunes (2003) proposed the Bidimensional 
Empirical Mode Decomposition (BEMD) algorithm, which decomposes images into Bidimensional Intrinsic 
Mode Functions (BIMFs). Initial BIMFs contain the higher spatial and frequency information; the later 
BIMFs and the residual are mainly composed of slow oscillations which illustrate the major trend of the 
original image. Like IMFs, BIMFs are potentially helpful for signal analysis. It has for instance been used 
for rainfall analysis, image enhancement and geologic feature extraction (Sinclair and Pegram, 2005; Qin 
et al., 2008; Huang et al., 2010). 

Obligatory choices in any BEMD implementation surround decisions on how to detect local extrema, 
how to interpolate scatter data points, and what stopping criteria to use. These decisions will impact the 
kind of BIMFs that are ultimately extracted. Nunes and Delechelle (2009) discuss extrema point 
detection based on neighboring window or various morphological operations. For the scatter data 
interpolation, thin-plate spline radial basis function (TPS-RBF), cubic spline, B-spline and Delaunay 
triangulation methods are usually used in the BEMD applications (Damerval et al., 2005; Nunes and 
Delechelle, 2009). Instead of scatter point interpolation, finite-element method and order statistics filter 
are employed to estimate the upper and lower envelopes for computation purpose  (Xu et al., 2006; 
Bhuiyan et al., 2008). Stopping criteria controls the number of iterations thus balancing performance 
versus computation time. 

Like EMD, mode mixing may restrict applications of BEMD. Overshoot and undershoot may occur as well 
depending on the type of chosen interpolant, leading to blurred and unrepresentive BIMFs. 
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In this paper, we first compare Delaunay triangulation, cubic and TPS-RBF interpolation methods to 
illustrate how they may impact analysis results. Next, we apply BEMD using these three interpolants onto 
seismic data to demonstrate potential pitfalls. Finally, we propose bidimensional ensemble empirical 
mode decomposition (BEEMD) and illustrate how it can improve image analysis by reducing interpolation 
artifacts. 

Bidimensional empirical mode decomposition 

BEMD decomposes an image into its Bidimensional Intrinsic Mode Functions (BIMFs) based on the 
local spatial and spectral scales. As an extension of EMD, the definition of BEMD is based on the paper 
of Huang et al. (1998) and the sifting process can be described as below (Linderhed, 2002; Nunes and 
Delechelle, 2009): 

1. Find all the local maxima and all the local minima points of the image. 

2. Create upper and lower envelopes by proper interpolation of the local maxima and local minima 
points of the image. 

3. For each point, take the mean envelope of the upper and the lower envelopes. 

4. Subtract the mean envelope from the input image. 

5. Check the residual between the original image and the mean image; determine whether it meets the 
stopping criteria. If not, repeat the process from step 1 with the residual as input images. If yes, define 
the residual as a BIMF and subtract it from image. 

6. Find next BIMF by starting over from step 1 with the residue between the image and former BIMF as 
input signal. 

Through the sifting procedure above, the mean envelope of each BIMF is guaranteed to be zero or 
nearly zero, and the BIMFs are locally orthogonal, two properties which are shared with 1D IMFs. The 
only difference is the number of local extrema and the number of zero crossings; for EMD, the number 
of local extrema and the number of zero crossings must be equal or differ by at most one, however, due 
to the properties of an image, it is impossible to satisfy this property for BEMD (Bhuiyan et al., 2008). 

Scatter point interpolation 

Point interpolation plays a significant role in any BEMD implementation, and the ideal produced 
envelopes should go through each data point and wrap the whole image. Different interpolation 
methods are suited for different images. For the smooth images, the aim of interpolation is to find a 
stable, continuous and smooth envelope. On the other hand, for the images which have many 
discontinuities, interpolation should be sharp. The sharp feature guarantees to avoid overshoot and 
undershoot problems, whereas smooth interpolation can not. 

To obtained the upper and lower envelopes, we test three interpolation methods: Delaunay 
triangulation interpolation (Sapidis and Perucchio, 1991), cubic interpolation and thin-plate spline radial 
basis function (TPS-RBF). 

Figure 1(a) is a synthetic image with smooth features. The blue dots are local maxima and red dots are 
local minima. Figures 1(b)-1(d) are envelopes obtained using all three interpolats. The envelopes 
obtained by Delaunay triangulation interpolation manifests sharp and discontinuous features; the ones 
obtained by cubic interpolation tend to be smoother; from comparison, the envelopes of TPS-RBF show 
the smoothest results, as the second derivative is guaranteed to be continuous. In this case, TPS-RBF 
preserves the features contained in the smooth test image best. 

Another synthetic image with discontinuous features is shown in Figure 2(a). In this case, cubic 
interpolation (Figure 2(c)) and TPS-RBF (Figure 2(d)) exhibit overshoot and undershoot artifacts; 
however, Delaunay triangulation (Figure 2(b)) produces the most satisfactory image. 
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Figure 1: Smooth test image. (a). Test image. Blue dots are local maxima and red dots are local minima. (b). 
Delaunay triangulation creates discontinuous slopes between each triangle part; (c). Cubic spline produces the 
smoother envelopes; (d). TPS-RBF yields the smoothest envelopes. 
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Figure 2: Test image with discontinuities. (a) Test image. Blue dots are local maxima and red dots are local 
minima. (b). Delaunay triangulation produces envelopes without overshoot; (c). cubic spline creates smoother 
envelopes with only some overshoot; (d). TPS-RBF produces the smoothest envelopes with severe overshoot. 

Application of BEMD on seismic data 

Figure 3 shows an image of seismic data representing two geologic subsurface features, namely a buried 
channel and a fault. Both features are identified by arrows. The image contains both smooth and sharply 
delineated features, making this a relevant test for identifying the effect of the interpolant on the resulting 
BIMFs. 

Figure 4(a) to Figure 4(c) display the first BIMF component of BEMD using 3 different interpolation 
methods. The outputs from Delaunay triangulation (Figure 4(a)) and cubic interpolation (Figure 4(b)) are 
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similar. They both highlight the channel and fault features clearly. The one from TPS-RBF (Figure 4(c)) 
fares less well. Overshoot and undershoot make the boundaries of the channel fuzzy, and there is no 
clear identification of the fault. The fault is not visible on the later BIMFs either. 

In the next section we demonstrate how noise-injection using bidimensional ensemble EMD can alleviate 
interpolation artifacts, thereby facilitating any interpretation without the need to adapt the interpolant each 
time to the image. 

Bidimensional ensemble empirical mode decomposition 

Based on the dyadic filter bank of EMD (Flandrin et al., 2004), Wu and Huang (2009) propose the 
ensemble empirical mode decomposition (EEMD), which enhances the application of EMD series 
method. Following their idea, we propose the bidimensional ensemble empirical mode decomposition 
(BEEMD). 

BEEMD is a noise-assisted analysis method. It injects noise into the decomposition algorithm to 
stabilize its performance. 

The implementation procedure for BEEMD is simple: 

(1). Add a fixed percentage of Gaussian white noise onto the image, 

(2). Decompose the resulting signal into BIMFs, 

(3). Repeat steps (1) and (2) several times, using different noise realizations; 

(4). Obtain the ensemble averages of the corresponding individual BIMFs as the final result. 

The added Gaussian white noise series are zero mean with a constant flat spectral and spatial 
spectrum. Their contribution thus cancels out and does not introduce any image components not 
already present in the original image, which is helpful to avoid mode mixing. 
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Figure 3: Seismic test image with smooth and discontinuous features. The channel and subtle fault are identified 
by arrows. 

Application of BEEMD on seismic data 

We apply BEEMD algorithm onto Figure 3 with all three interpolants using 50 noise realizations with 
10% added noise. This time, all BIMF1 (Figure 4(d) to Figure 4(f)) show similar results, always 
identifying both the fault and channel features. Both Delaunay triangulation and cubic interpolation 
produce similar results to a single BEMD; yet the TPS-RBF outcome has been greatly improved by 
eliminating most interpolation artefacts due to overshoot and undershoot (compare with Figure 4). 

Conclusions 

BEMD can aid in image analysis; yet the type of chosen interpolant can greatly affect the extracted 
bidimensional intrinsic mode functions. Non-smooth interpolants such as Delaunay triangulation are best 



  

 
GeoConvention 2014: FOCUS 5 

for images with many sharply delineated features and discontinuities. Very smooth interpolants such as 
TPS-RBF are superior if inherent features exhibit smooth gradients as well or if instantaneous 
frequencies are also desired. Cubic splines seem to cover a convenient middle road, rendering them 
suitable as all-purpose interpolants. 

Ideally however the interpolant is adapted to each image, making automated interpretations more 
challenging. On the other hand noise-injection using bidimensional ensemble empirical mode 
decomposition (BEEMD) can alleviate many interpolation artifacts, thereby faciliting any interpretation 
without the need to adapt the interpolant each time to the image. 
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BIMF1 from cubic interpolation
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BIMF1 from TPS-RBF
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BIMF1 from Delaunay triangulation
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BIMF1 from cubic interpolation
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BIMF1 from TPS-RBF

1000 2000 3000 4000 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

6

(c)

(b)

(f)

(e)

(a) (d)

 
Figure 4: (a) to (c) are BIMF1 after BEMD results using Delaunay triangulation, cubic interpolation and TPS-RBF, 
respectively. The outputs from Delaunay triangulation and cubic interpolation highlight the channel and fault 
features. Overshoot and undershoot artifacts spread out the channel boundaries in TPS-RBF method. (d) to (f) 
are BIMF1 after BEEMD with 50 realizations using Delaunay triangulation, cubic interpolation, and TPS-RBF 
respectively. All three interpolants now produce similar results. 
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