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Summary

This paper studies the effects of model parameterizations on velocity model building using full waveform in-
version with Newton-based optimization method. Three types of model parameterizations were considered.
These include velocity, slowness and slowness squared. Numerical results demonstrate that the quality of
the reconstructed velocity model and convergence rate of the Newton method based acoustic full-waveform
inversion is greatly affected by the type of model parameterization used. A high convergence rate of FWI with
Newton-based optimization method can be achieved by using either slowness or slowness squared as model
parameterization in comparison with velocity parameterization.

Introduction

Full waveform inversion (FWI) aims to estimate subsurface model parameters through local optimization meth-
ods (Lailly, 1983; Tarantola, 1984; Stekl and Pratt, 1998; Pratt et al., 1998; Virieux and Operto, 2009). The
inversion is often performed using iterative gradient methods. For large scale problems, due to computational
cost of simulating multiple sources on every iteration, the gradient-based methods are the most practical and
popular optimization engine for FWI. However, gradient-based optimization methods are generally very slow
and have difficulties of properly scaling the reconstructed model parameters in comparison to Newton’s meth-
ods. The most common method to improve the rate of convergence in the gradient optimization algorithm is to
scale the gradient using diagonal components of a pseudo-Hessian matrix (Shin et al., 2001).

On the other hand, the Newton-based methods that require the Hessian matrix have fast convergence rate
compared to gradient-based methods. However, fast convergence rate in Newton-based method comes at the
expense of solving the inverse of a large dense Hessian matrix or a set of large system of dense Hessian matrix
have to be solved. Even though the Newton-based methods have faster convergence rate, the choice of model
parameterization influences the behavior of the Hessian matrix and thereby affects the convergence rate and
the quality of the reconstructed model parameters. In the acoustic full waveform inversion, the Earth’s model
estimation is often carried out in velocity model parameterization. However, other types of model parameteri-
zations can also be employed such as slowness and slowness squared. These three model parameterizations
do not change the shape of the misfit function but they affect how the gradient is scaled, the convergence rate
and the accuracy of the results by changing the characteristic nature of the Hessian matrix.

In this paper, Singular Value Decomposition (SVD) analysis on the Hessian matrix from a small portion of
the Marmousi velocity model is used to examine the influences of the three model parameterizations. The
Gauss-Newton (GN) and full Newton (FN) methods are used for full waveform inversion.

Theory

Waveform inversion often uses the least-squares misfit defined as the l2 norm of residual between the observed
data dobs and the model data dcal ,

J(m) =
1
2

Nω

∑
ωi

Ns,Nr

∑
s,r

(dobs
s,r (ωi)−dcal

s,r (ωi))
†(dobs

s,r (ωi)−dcal
s,r (ωi))+µR(m), (1)

where † is the complex conjugate transpose, ω is the angular frequency, R(m) is the regularization term and µ

is the regularization parameter. The parameters Ns and Nω represent the number of sources and frequencies,
respectively. In Newton’s formulation, the model perturbation update (4m) is estimated by solving the following
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linear system of equations
ℜe[H]4m =−ℜe[g], (2)

where ℜe represents for real part, and H and g are the Hessian matrix and the gradient of the misfit function,
respectively.

Even though our main goal is to estimate velocity, in the acoustic wave approximation, we can parameterize
the model parameter m in terms of velocity (v), slowness (v−1) or slowness squared (v−2). The shape of the
misfit function in equation (1) does not change by the type of the model parameterization used in the numerical
optimization scheme. However, the choice of model parameterization influences the eigenvalue spectrum of
the Hessian matrix and the direction of gradient. Consequently this also influences the convergence behaviour
of the algorithm. The change in the direction of gradient comes from the scaling term of the partial derivatives
of the Helmholtz operator.

Examples

Figure 1 shows the portion of the Marmousi velocity model that is used to analyze the impact of model param-
eterization choice on the Hessian matrix. The analysis focus on the eigenvalues and eigenvectors obtained
from the Singular Value Decomposition (SVD) of the Hessian matrix.

From SVD analysis of the Hessian matrix and making use of equation (2), the gradient vector of the objective
function is the sum of the projected model perturbation along the eigenvectors. The direction of eigenvectors
corresponding to largest and smallest eigenvalues point in the direction of greatest and smallest curvature of
the objective function, and provide the well and poorly retrieved parts of the model parameter, respectively.
Figure 2 shows the first three eigenvectors in depth corresponding to the largest three eigenvalues. Plots
from bottom to up are the eigenvectors in depth associated with the 1st , 2nd and 3rd largest three eigenvalues,
respectively. The red, green and blue colors represent eigenvectors from velocity, slowness and slowness
squared model parameterizations, respectively. The eigenvector corresponding to the largest eigenvalue pro-
vides the most importance part of the model parameters that can be retrieved by FWI. As we see from the plots,
unlike the eigenvectors that arises from slowness or slowness squared model parameterization, the magnitude
of eigenvectors results from the velocity model parameterization decreases with depth. As a result, with the
velocity model parameterization in the acoustic approximation FWI, the velocity model of very shallow parts
would be properly retrieved well than the deep part of the model, where the velocities are the highest. In the
case of slowness squared parameterization, the eigenvectors are almost depth independent and are strong
with depth ( see Figure 2) compared to eigenvectors from the slowness or velocity parameterization. Hence,
the deep part of the model would be properly reconstructed.
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Figure 1 Portion of Marmousi velocity Model.
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Figure 2 The first three model eigenvectors of the approximate Hessian matrix against depth corre-
sponding to the largest eigenvalues of the Hessian matrix.

Next we consider Marmousi velocity model shown in Figure 3a. For inversion, 95 sources and 192 receivers
at the surface are considered, and a set of 8 discrete frequencies were selected between 3.1 Hz and 21
Hz. Figures 4 depict the reconstructed velocity models using GN and FN methods from noisy data set with
SNR=10. The deep part of the model, where velocities are the highest, are well determined in the case
slowness or slowness squared parameterization. Thus, the solutions from slowness and slowness squared
parameterizations have more balanced amplitude in shallow and deep parts of the model.

The convergence rates of the GN and FN methods for the three types of model parameterizations are shown in
Figures 5. As can be seen from the figure, in the slowness squared parameterization, the reduction in the misfit
function by GN or FN method is faster than the one obtained from slowness or velocity parameterization. This
is because the use of slowness or slowness squared parameterization provides proper scaling of the descent
direction both in the deeper and shallow parts of the model.

Conclusions

We examined effects model parameterizations of 2D acoustic full waveform inversion designed to estimate a
reliable velocity model using Newton-based optimization methods. Velocity, slowness and slowness squared
model parameterizations were considered. The use of Hessian matrix in FWI numerical algorithms plays a

GeoConvention 2014: FOCUS 3



0

2

3

D
ep

th
 (

K
m

)

3 6 9
Lateral position (Km)

1500

2500

3500

4500

5500

m
/s

(a)

0

2

3

D
ep

th
 (

K
m

)
3 6 9
Lateral position (Km)

1500

2500

3500

4500

m
/s

(b)

Figure 3 True Marmousi velocity model (a) and smooth velocity model used as starting model for
inversion (b).
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Figure 4 Reconstructed velocity models after the end of all frequency data components using Gauss-
Newton and Full Newton. From top to bottom are the reconstructed velocity models using velocity
v, slowness v−1 and slowness squared v−2 parameterization, respectively. On the right from top to
bottom (a), (b) and (c) are results obtained using Gauss-Newton and on the left (d), (e) and (f) are
results obtained using Full Newton method obtained from noisy data with SNR=10.
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Figure 5 Data misfit reduction of the Marmousi velocity model for three model parameterizations:
velocity v, slowness v−1 and square of slowness v−2. On the left, from top to bottom are misfit
functions for 4.70 Hz and 20.02 Hz data sets using Gauss-Newton method, and on the right from top
to bottom are misfit functions using Full Newton optimization method.

crucial role in improving resolutions and amplitudes of deeper parts of the model by re-calibrating energies of
gradients in shallow and deeper parts of the model. Eigenvectors analysis of the Hessian matrix show that
slowness or slowness squared model parameterization makes the eigenvectors almost depth independent as
compared to the case of velocity parameterization. As a result the deeper parts of the model would be properly
reconstructed and superior convergence rates of Gauss-Newton and full Newton methods can be achieved by
the use of slowness squared parameterization.
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