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Summary 

Microseismicity is recorded in an underground mine by a network of 7 boreholes each having 4 geophones 
during January 2011. The inverted event locations are confined in a narrow band between depths of 0.4 to 
0.5 km around the tunnels. We propose a simplified geomechanical model for the tunnels as an oblate 
spheroidal cavity and compute stress concentration around it using Eshelby's equivalent inclusion method. 
We use Coulomb's failure function as a stability criterion to identify regions most susceptible to shear 
slippages which show good match with the observed microseismic cloud. The same methodology is in 
principle applicable to microseismic data recorded during hydraulic fracturing treatments and may give 
more insight into the possible shape of the induced fracture network, resulting stress changes and the 
recorded microseismic cloud. 

Introduction 

Microseismic monitoring is being used increasingly in assessing the safety and progress of underground 
mining operations (Young and Maxwell, 1992; Westman et al., 2012; Castellanos and Van der Baan, 
2014). Most of the applications involve locating and tracking microseismic events. Microseismic data in 
exploration settings usually contain many events with similar waveform. Waveform crosscorrelation 
techniques have been used to compute highly accurate differential arrival times and accurate relative 
relocations (Poupinet et al., 1984; Waldhauser and Ellsworth, 2000; Castellanos and Van der Baan, 2013). 
The higher accuracy in event locations allows for advanced geomechanical interpretation of the overall 
process causing microseismicity. 
We analyze the relocated microseismic events around tunnels in an underground mine by modeling the 
tunnels as oblate spheroidal cavity and computing stress concentrations around it. The spheroidal cavity 
leads to differential stress concentrations in the surrounding rock mass which cause some regions to fail 
more likely than others. Our modeled results show good match with the observed relocated microseismic 
events cloud. 

Background data 

In order to monitor zones of potential instabilities and possible water inflow incidents, a microseismic 
system was installed in an underground mine. A network of 7 monitoring wells each with 4 active three-
components geophones recorded the microseismic events during January 2011. Castellanos and Van 
der Baan (2013) relocated these microseismic events using double-difference relocation. Barthwal and 
Van der Baan (2014) performed double-difference tomography on this dataset to simultaneously invert 
for event locations and velocity model. Figure 1 shows the relocated microseismic events overlying the 
inverted velocity model and tunnel layout which are strongly clustered towards the center of the modeled 
region at X=0.2 km, Y=0.2 km between depths of 0.4 km to 0.5 km. Castellanos and Van der Baan (2014) 
concluded that this microseismicity is not related with blasting activities in the mine but might have been 
triggered by the transportation of the debris. 
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Stress modeling 

The tunnels have extensive areal coverage (Figure 1) so we can model them as an oblate spheroid with 
semi major axes a, b and c along X, Y and Z axes respectively such that a=b >>c. From well bore stress 
measurements, we know that the minimum principal stress is 0.87 of the vertical stress and the maximum 
principal stress is 1.15 of the vertical stress for a rock mass with a saturated density of 2,500 kg/m3. 

 

 

 
Figure 1: Inverted event locations overlying the tunnel layout and inverted velocity model obtained from 
double difference tomography. Top: Map view at depths of 0.4 km, 0.45 km and 0.5 km. Middle: North-
South cross section at X=0.1 km, 0.2 km and 0.3 km. Bottom: East-West cross section at Y=0.1 km, 0.2 km 
and 0.3 km. The events show strong clustering around X=0.2 km, Y=0.2 km between depths of 0.4 to 0.5 
km. The tunnels have extensive areal coverage as observed in the map view (top panel). 
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Table 1 shows the parameters of the oblate spheroid used to compute stress concentration. We assume 
that the far field principal stresses are uniform. We use Eshelby's equivalent inclusion method (Eshelby, 
1957; Ju and Sun, 2001; Healy, 2009) for finding the stresses outside the spheroidal cavity. The stress 
perturbations outside a spheroidal cavity centered at x1 is given by  
      𝝈’ = [C0.G(x - x1)]:ε*                                                                           (1) 
where C0 is the linear elasticity tensor, G(x-x1) is the exterior point Eshelby's tensor and ε is the non-
interacting eigen strain. The explicit mathematical expressions for G(x-x1) and ε can be found in Ju and 
Sun (2001). For an isotropic medium, the linear elasticity tensor C0 contains only two independent elastic 
constants.  
Since the spheroidal cavity leads to differential stress concentrations in the surrounding rock mass, there 
are some regions which are more likely to fail as compared to others. To analyze the stability around the 
cavity, we determine the Coulomb failure factor (CFF) as  
                                                                      CFF=𝞽- µ𝝈n                                                                               (2) 

where 𝞽 and 𝝈n are the shear and normal stresses respectively acting on any weakness plane with a given 
orientation and µ is the coefficient of friction. We assume zero cohesive strength and take µ=0.6 owing to 
the presence of pre-existing fractures. Then CFF>0 represents the regions which are most likely to 
undergo shear slippages under the prescribed stresses (Zoback, 2007). We compute the normal and shear 
stresses on an arbitrary plane whose normal makes equal angles with the three principal axes such that its 

components n1=n2=n3=  . This plane will have the maximum shear stress under given principal stresses. 

The normal stress 𝝈n and the shear stress 𝞽 on this plane are computed as 

                                                 𝝈n = n1
2 𝝈1 + n2

2 𝝈2 + n3
2 𝝈3 = (𝝈1 + 𝝈2 + 𝝈3)/3                                               (3)          
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2                                 (4) 

where 𝝈1, 𝝈2 and 𝝈3 are the near field stresses resulting from the sum of the uniform far field stresses and 
the stresses concentrated around the spheroidal cavity computed using Eshelby’s equivalent inclusion 
method. 
 

Depth, h 
(m) 

a (m) b (m) c (m) Density, 
ρ kg/m3 

Lame parameter, λ (GPa) Poisson’s ratio, nu Vertical 

stress, 𝝈v 
475 100 100 15 2500 17.5 0.2 ρgh 

 
Table 1: Parameters for computing stress concentration around the oblate spheroid. 

Results 

Figure 2a-c shows the stress perturbations around an oblate spheroid computed in a vertical cross section 
along the maximum horizontal stress passing through the center of the spheroid. The stress perturbations 
in the normal horizontal stresses is extensional in the region above and below the center while it is 
compressional along the equator. The cavity does not support any stress normal to its surface, so the 
horizontal stresses normal to the cavity are zero at its surface. The vertical stress has a large 
compressional value along the equator, however this stress concentration is limited very close to the 
surface of the cavity. The vertical stress above and below the cavity is not much affected by the presence 
of the cavity except at its surface. The Coulomb failure factor computed around the spheroidal cavity is 
shown in Figure 2d. The region above and below the center of the spheroid is most unstable due to 
positive values of Coulomb failure factor. Since we have tunnels at depths of 420 m, 465 m, 480 m and 500 
m, each one can be independently modeled as an oblate spheroid. Therefore the instability at the roof and 
base of a single spheroidal cavity can be further amplified due to its stress interactions with the spheroids 
above and below it. This model predicts a linear pattern of events clustered in a narrow region around the 
center of the spheroids (assumed to be at X=0.2 and Y=0.2 km) extending vertically as observed in Figure 
1. Further We observe that the seismicity is clustered only around the main shaft and it is completely 
absent around the second shaft (Figure 1, middle panel) which suggests that the hoop stresses are not the 
major factor causing microseismicity.  
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Figure 2: Vertical cross section along the maximum horizontal stress passing through the center showing 
stresses (a-c) and Coulomb failure function (CFF) (d) around an oblate spheroid computed with 
parameters given in table 1. Positive values represent tensile stresses while negative values correspond 
to compressive stresses (a) Relative change in normal stress along X-axis (maximum horizontal stress), 
(b) Relative change in normal stress along Y-axis (minimum horizontal stress), (c) Relative change in 
normal stress along Z-axis (vertical stress), and (d) Coulomb failure function (CFF). The roof and base of 
the cavity has positive CFF values and hence are prone to shear slippages. 

Conclusions 

We modeled the tunnels in an underground mine as oblate spheroidal cavities and computed stress 
concentrations around them using Eshelby’s equivalent inclusion method. Using Coulomb failure function 
as a stability criterion we are able to identify zones prone to shear slippages which show good correlation 
with the inverted microseismic event locations. This analytical stress modeling is useful in identifying 
anomalous stress concentrations and potential sites for future microseismicity. The same methodology 
also holds promise for microseismic data acquired during hydraulic fracturing treatments, where the 
Coulomb failure function should correlate to the shape of the microseismic cloud.  
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