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Summary  

We consider the problem of scattering of viscoelastic waves from perturbations in five 
viscoelastic parameters (density, P- and S-wave velocities, and P- and S-wave quality factors), 
as formulated in the context of the Born approximation. Within this approximation the total 
wave field is the superposition of an incident plane wave and a scattered wave, the latter being 
a spherical wave weighted by a function of solid angle called the scattering potential. In elastic 
media the scattering potential is real, but if dissipation is included through a viscoelastic model, 
the potential becomes complex and thus impacts the amplitude and phase of the outgoing 
wave. The isotropic-elastic scattering framework of Stolt and Weglein, extended to admit 
viscoelastic media, exposes these amplitude and phase phenomena to study, and in particular 
allows certain well-known layered-medium viscoelastic results due to Borcherdt to be re-
considered in an arbitrary heterogeneous Earth. We show that elliptically polarized P- and SI- 
waves cannot be scattered into linearly polarized SII-waves. Furthermore, the elastic 
formulation is straightforwardly recovered in the limit as P- and S-wave quality factors tend to 
infinity. 
 

Introduction 

The scattering of seismic waves by purely elastic heterogeneities under the Born approximation has 

been investigated by many authors (Wu and Aki, 1985; Beylkin and Burridge, 1990; Sato et al., 2012; 

Stolt and Weglein, 2012). Stolt and Weglein (2012) introduced a formal theory for the description of the 

multidimensional scattering of seismic waves based on an isotropic-elastic model. We identify as a 

research priority the adaptation of this approach to incorporate other, more complete pictures of seismic 

wave propagation. Amongst these, the extension to include anelasticity and/or viscoelasticity (Flugge, 

1967), which brings to the wave model the capacity to transform elastic energy into heat, ranks very 

high. Anelasticity is generally held to be a key contributor to seismic attenuation, or “seismic Q”, which 

has received several decades worth of careful attention in the literature (e.g., Aki and Richards, 2002; 

Futterman, 1967). Development of methods for analysis (e.g., Tonn, 1991), processing (Bickel and 

Natarajan, 1985; Hargreaves and Calvert, 1991; Wang, 2006; Zhang and Ulrych, 2007; Innanen and 

Lira, 2010), and inversion (Dahl and Ursin, 1992; Ribodetti and Virieux, 1998; Causse et al., 1999; 

Hicks and Pratt, 2001; Innanen and Weglein, 2007) of wave data exhibiting the attenuation and 

dispersion of seismic Q remains a very active research area. Borcherdt (2009) has presented a 
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complete theory for seismic waves propagating in layered anelastic media, assuming a viscoelastic 

model to hold.  

 

In the elastic-isotropic setting, beginning with a plane defined by the incoming wave vector and the 

outgoing wave vector Stolt and Weglein (2012) develop scattering quantities which in an intuitive 

manner generalize the layered-medium notions of reflections and conversions of P, SV and SH waves. 

Generalizing this approach to allow for viscoelastic waves of the type described by Borcherdt has 

several positive outcomes. First, and foremost, it provides an analytical framework for the examination 

of processes of scattering of viscoelastic waves from arbitrary three-dimensional heterogeneities, as 

opposed to layered media. Second, it provides a foundation for direct linear and nonlinear inversion 

methods for reflection seismic data, which go well beyond existing an-acoustic results (Innanen and 

Weglein, 2007; Innanen and Lira, 2010). And third, it provides a means to compute and analyze the 

gradient and Hessian quantities used in iterative seismic inversion (see the review by Virieux and 

Operto, 2009). 

 

There are three types of waves in a viscoelastic medium: P, Type-I S, and Type-II S. For each wave 

type there is a corresponding seismic quality factor, 𝑄𝑃, and  𝑄𝑆. These quality factors have the 

standard definitions in terms of ratios of the real and imaginary parts of the complex moduli. 

In the case of inhomogeneous waves, the attenuation and propagation vectors are not in the same 

direction. The wavenumber vector of inhomogeneous waves is represented by 

𝑲 = 𝑷 − 𝑖𝑨    (1) 

Here 𝑷 is the propagation vector, perpendicular to the constant phase plane 𝑷 ∙ 𝒓 =  𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕, and 𝑨 

is the attenuation vector perpendicular to the amplitude constant plane 𝑨 ∙ 𝒓 =  𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕. The 
attenuation vector 𝑨 is in the direction of maximum amplitude decay. If the attenuation and propagation 

vectors are parallel, the wave is homogeneous (elastic behaviour is recovered in the limit as 𝑨 
vanishes). 
 

Linearized scattering potential  

In the scattering framework, the unperturbed medium is a reference medium and the perturbed medium 
is associated with the actual medium. The difference between the actual and reference medium wave 
operators is the perturbation operator or scattering operator. In the elastic-isotropic case, this operator 
can be expressed in terms of a 3×3 matrix, each element of which corresponds  to the scattering of one 
wave type to another. The diagonal elements refer to scattering which conserves wave type, and off-
diagonal elements refer to those which convert wave type. 
 

The scattering potential helps us to identify the effects of physical parameters like density velocities and 
quality factors on the reflection functions. The seismic scattering formulation, and the resulting 
scattering operator forms, can be used to generalize “layered medium” wave propagation results, 
providing expressions describing waves interacting with not 1D media but with arbitrary 
multidimensional heterogeneities. It can be used in principle to generate exact solutions for such 
waves, but those solutions are in the form of infinite series, which are subject to often rather thorny 
questions of convergency. In fact the main application has been in the generation of powerful 
approximate solutions. The Born approximation is a solution accurate to first order in the scattering 
operator, and is used as the basis for many types of migration and linearized inversion in seismic 
applications (Bleistein, 1979; Clayton and Stolt, 1981; Beylkin, 1985, etc.). 
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Viscoelastic P-P scattering 
 
This element quantifies the potential for a point in a viscoelastic medium to scatter a P-wave 
into a P-wave. The incident and reflected P-waves can be either inhomogeneous with elliptical 
motion or homogeneous with linear motion in the direction of propagation, depending on the 
angle between the propagation and attenuation vectors. The scattering potential for PP mode 
is 

     (2) 

where elastic scattering potential  is given by 
 

 (3) 

 

and anelastic part of the scattering (Moradi and Inannen, 2014) 
 

 (4) 

where 

 (5) 

 

From above equations, it is evident that the viscoelastic scattering potential is complex. The real part is 
the elastic scattering potential and the imaginary part is the term induced by the anelasticity of the 

medium. In above relations 𝐴 stands for fractional perturbation, for instance 𝐴𝜌 = 2
𝜌2−𝜌1

𝜌2+𝜌1
. 

In Figure .1 we plot the elastic and anelastic parts of the density and S-wave velocity components of 
the potential for scattering of an inhomogeneous P-wave to an inhomogeneous P-wave. We observe 
that the anelastic density component is comparatively small and the major contribution comes from the 
elastic part. In the limit of normal incidence, the absolute value of the density part of the elastic 
scattering potential goes to its maximum value, and the anelastic part approaches to zero. For S-wave 
velocity component of the scattering potential, similar to the density component, the major contribution 
to the reflectivity is from the elastic part. In this case both elastic and anelastic components approach 
zero for normal incidence as expected. 
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Fig.1. Elastic and anelastic density (left) and S-velocity(right) components of the viscoelastic potential for scattering 

of incident inhomogeneous P-wave to inhomogeneous reflected P-wave versus of opening angle, for background 

attentaution angle 60°. Quality factor of P-wave for reference medium is to be 10 and for S-wave is 7. Also the S-

to P-velocity ratio for reference medium is chosen to be 1/2. Solid line is for elastic part and dash line for anelastic 

part. 

 

Conclusions 

The seismic response of the real earth deviates from the elastic-isotropic model often used to frame the 

seismic wave propagation problem.  Here we investigate viscoelasticity in its capacity to reproduce the 

effect of dissipation on the propagation of a wave.  Full formal theory for viscoelastic seismic waves 

exists, but the most powerful versions of it have largely been restricted to layered media.  Exact, 

closed-form solutions for viscoelastic waves in arbitrary multidimensional media are not in general 

available, but, to first order, scattering formulations can provide interpretable approximate forms.  

These forms are important for obtaining physical insight into interactions of seismic waves with 

dissipative media, but also for posing and solving inverse scattering and full waveform inversion 

problems. 

 The scattering potential in displacement space is obtained by sandwiching the scattering operator 

between the incident and reflected polarization vectors. Since for the viscoelastic waves, polarizations 

are complex, the viscoelastic scattering potential we obtained is a complex function whose real part is 

elastic scattering potential and whose imaginary part is the related to the anelasticity of the medium. In 

contrast to the elastic scattering potential that only alters the amplitude of the outgoing field, the 

viscoelastic scattering potential alters both amplitude and phase of the outgoing field. Anelasticity 

appears to have more significant effect on converted waves than on conserved modes. 
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