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Summary  

Random and coherent noise exist in microseismic and seismic data, and suppressing noise is a crucial 
step in seismic processing. We propose a novel seismic denoising method, based on ensemble empirical 
mode decomposition (EEMD) combined with adaptive thresholding. A signal is decomposed into individual 
components, called intrinsic mode functions (IMF). Each decomposed signal is then compared to those 
IMFs resulting from a white noise realization to determine if the original signal contains structural features 
or white noise only. A thresholding scheme then removes all non-structured portions. The proposed 
scheme is very flexible and applicable in a variety of domains or a diverse set of data. For instance it can 
serve as an alternative for random noise removal by bandpass filtering in the time domain or spatial 
prediction filtering in the frequency-offset domain to enhance the lateral coherence of seismic sections. We 
demonstrate its potential for microseismic and reflection seismic denoising by comparing its performance 
on field data using a variety of methods including bandpass filtering, basis pursuit denoising, and 

frequency-offset deconvolution and frequency-offset EMD. 

Introduction 

The denoising via EMD started from examining the properties of IMFs resulting from white Gaussian noise 
(Flandrin et al., 2004b). The first attempt is detrending and de-noising ECG signals by partial 
reconstructions with the selected IMFs (Flandrin et al., 2004a). However, this approach has the 
disadvantage that even if the appropriate IMFs are selected, they still may be noise contaminated. Boudraa 
and Cexus (2006) improve the denoising scheme by using adaptive thresholding and a Savitzky-Golay 
filter for each IMF, respectively. Inspired by translation invariant wavelet thresholding, Kopsinis and 
McLaughlin (2009) propose an iterative EMD denoising method to enhance the original method. In seismic 
processing, Bekara and Van der Baan (2009) first apply of EMD in f-x (frequency-offset) domain, as f-x 
EMD. They find that eliminating the first IMF component in each frequency slice corresponds to an auto-
adaptive wavenumber filter, thus reducing the random and steeply dipping coherent noise in the seismic 
data.  

In this paper, we first propose a novel method for suppressing random noise based on ensemble empirical 
mode decomposition (EEMD) principle. Next, we test the proposed EEMD thresholding on microseismic 
example. Finally, we extend the proposed method into the f-x domain to suppress random and coherence 
noise in seismic data. 

Theory  

The first attempt at using EMD as a denoising tool emerged from the need to know whether a specific IMF 
contains useful information or primarily noise. Thus, Flandrin et al. (2004b) and Wu and Huang (2004) 
nearly simultaneously investigate the EMD feature for Gaussian noise, and they conclude that EMD acts 
essentially as a dyadic filter bank resembling those involved in wavelet decomposition. Therefore, the 
energy of each IMF from white Gaussian noise follows an exponential relationship, and Kopsinis and 
McLaughlin (2009) refine this relationship as 
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where 
2

kE  is the energy of the k-th IMF, and the parameters 0.719 and 2.01 are empirically calculated 

from numerical tests. As the IMFs resemble the wavelet decomposition component, the energy of the 

first IMF 
2

1E  can be estimated using a robust estimator based on the component’s median (Donoho and 

Johnstone, 1994; Herrera et al., 2014): 
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where n is the length of the input signal. Then we can set the adaptive threshold kT  in each IMF for 

suppressing the random noise as 

                                                              * 2*ln(n) * ,k kT E                                                                (3) 

where   is the main parameter to be set. Combination of Equations 2 and 3 is a universal threshold for 

removing the white Gaussian noise in the wavelet domain. Followed by the above procedures, the 

reconstructed signal 
^

s  is expressed as 
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thresholding is only applied between the m1-th and m2-th IMFs, where kIMF  is the k-th IMF, and M is 

the total number of IMFs of the input signal. If m2 is set to 0, we apply the thresholding from the m1-th 
IMF to the last IMF. The implemented threshold method is IMF interval thresholding (Kopsinis and 
McLaughlin, 2009). 

Due to the mode mixing of EMD, direct application of the above procedure may not achieve the best 
effect. Considering the different SNR cases, we employ the EEMD principle to improve the EMD 
denoising performance. The procedure of EEMD denoising is as below: 
(1). Create white Gaussian noise. 
(2). Calculate IMF1 of the white Gaussian noise and add it onto the target signal using a predefined SNR. 
(3). Decompose the resulting signal into IMFs. 
(4). Apply the EMD denoising principle to the resulting IMFs. 
(5). Repeat steps (1), (2), (3) and (4) several times with different noise realizations. 
(6). Compute the ensemble denoising average as the final output. 
Although not adding the whole white Gaussian noise sequence onto the target signal does not exactly 
respect the EEMD principle, it shows better results in our test data examples rather than a denoising 
procedure exactly based on EEMD. Due to the dyadic filter feature of EMD, IMF1 of white Gaussian 
noise corresponds to the high frequency noise. It helps relieve the mode mixing of EMD to some extent, 
and only affects the high frequency information of the input signal, which can be compensated by a 
bandpass filter after the proposed EEMD denoising. 

Examples 

The first example is a challenging microseismic event (Castellanos and van der Baan, 2013) is shown in 
Figure 1, which comes from Saskatchewan in Canada. The raw data (Figure 1(a)) quality is bad, as it 
does not only contain random noise, but also strong electronic noise. High energy 30 Hz, 60Hz and 120 
Hz noise components exist in its spectra (Figure 2(a)). Directly applying the EEMD thresholding and 
basis pursuit to the raw data would fail, as they are only valid for suppressing random noise. A pre-
processing step must be accomplished before the further processing. Figure 1(b) is the output after a 
bandpass filter and notch process of 30 Hz and 60 Hz. The 120 Hz energy is not notched down as it is 
not visible in the other microseismic events of this experiment.   
Even though the pre-processing improves the quality of the raw data, Figure 1(b) still suffers from severe 
random noise. EEMD thresholding (Figure1(c)) with  =0.25, m1=1 and m2=1 reduces more random 

noise than basis pursuit (Figure 1(d)), and it more effectively (Figure 2(c)) decreases the 120 Hz energy 
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than basis pursuit (Figure 2(d)). Figure 2 shows the corresponding spectra of Figure 1. Note that the 
regularization parameter is 35 for the basis pursuit implementation. 
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Figure 1: (a). Raw microseismic event. (b). Output 
after pre-processing. (c). EEMD thresholding output 
on (b). (d). Basis pursuit output on (b). The raw 
microseismic event contains random and electronic 
noise. 

Figure 2: The spectra of Figure 1. (a). Spectra of the 
raw microseismic event. (b). Spectra after pre-
processing. (c). Spectra after the proposed method 
on (b). (d). Spectra after basis pursuit on (b).  

 

 
Figure 3: A section of Alaskan data. Courtesy: USGS. 

 

For 2D and 3D seismic data, one option is 
applying the proposed EEMD thresholding for 
each trace to suppress the random noise; Yet 
with the disadvantage that this approach does 
not consider the lateral coherence of seismic 
reflections. A more sophisticated approach is to 
apply EEMD thresholding in the f-x domain. 
Figure 3 is a section of Alaskan data. It clearly 
shows that these data do not only contain 
random but also coherent noise, like high energy 
linear dipping events. The same sections after 
three different denoising outputs are shown in 
Figure 4. F-x EEMD thresholding (Figure 4(c)) 
obtains the most satisfactory output, and the 
events become much clearer.  
There are still some random and coherent noise 
in the results of f-x EMD (Figure 4(a)) and f-x 
deconvolution (Figure 4(b)) in varying degrees. 
F-x EMD, which eliminates only the first IMF

component in each frequency slice, does not seem to have great impact on the data. The proposed 
method uses parameters m1 = 3, m2 = 0 and   = 0.3 which deletes the first two IMFs, and then applies 



  

 
GeoConvention 2015: New Horizons 2 

the IMF interval thresholding from IMF3 to the last IMF. EMD thresholding thus removes both random 
and dipping results as seen in the difference section (Figure 5(c)), whereas f-x EMD eliminates merely 
the random noise (Figure 5(a)), but f-x deconvolution is only valid for random noise suppression; no 
dipping noise is shown in its difference profile (Figure 5(b)). 

Conclusions 

EEMD thresholding distinguishes between structured signal and random noise within each IMF. It can 
serve as an alternative to simple bandpass filtering with the advantage that it acts as a nonstationary 
(time-varying), auto-adaptive, frequency filter. In this sense it performs equally well or possibly even 
better than basis pursuit denoising. If applied in the f-x domain, the method acts as a sophisticated wave-
number filter, removing both random and dipping coherent noise. The microseismic and reflection 
seismic examples illustrate the good performance of the proposed method. 
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Figure 4: (a). Result of f-x EMD. (b). Result of f-x deconvolution. (c). Result of the proposed method.  

 

Figure 5: (a). Difference section of f-x EMD. (b). Difference section of f-x deconvolution. (c). Difference section of the 
proposed method. 
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