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Summary  

I describe a new two-way wave-equation migration that combines the efficiency of the one-way wave-
equation migration with the imaging capabilities of reverse time migration. The method extrapolates the 
wavefield in the frequency-wavenumber domain depth slice by depth slice. The key to this method is to 

perform upward continuation from the bottom depth to compute PPz / , the ratio of the wavefield and its 

derivative, using the absorbing boundary condition at the bottom. Then the wavefield is downward-

continued from the surface using PPz / . Thus the image at any subsurface point is dependent on the 

entire wavefield. Steeply dipping events, turning waves, and prism waves can all be handled. The 
computational cost is one and a half times that of the one-way wave equation migration, cheaper than 
the reverse-time migration whose cost is proportional to the fourth power of the frequency. A synthetic 
data example shows that the result is comparable to the one from the reverse time migration. 

Introduction 

Over the last  decade the wave-equation migration (WEM) has been increasingly preferred over Kirchhoff-
type migrations for its ability to handle multiple ray paths. Standard WEM or the one-way WEM splits the  
two-way wave equation into two one-way wave equations, namely the downgoing wave equation and the 
upgoing wave equation, which are then solved in either the frequency-space or the frequency-wavenumber 
domain. For the prestack depth migration, the one-way WEM extrapolates the downgong wavefield (the 
source wavefield) and the upgoing wavefield (the receiver wavefield) in depth. The operator for 
extrapolating the upgoing wavefield is the complex conjugate of the downgoing operator so that, in effect, 
the one-way WEM downward continues both source and receiver wavefields from the surface using the 
same extrapolation operator.  As a result, the image at any subsurface point is only related to the wavefield 
above this point. This makes the one-way WEM efficient but dip-limited and unable to migrate turning 
waves. 

 

To overcome these disadvantages, one must directly solve the two-way wave equation instead of 
decomposing it into two one-way wave equations. A popular approach here is the reverse time migration 
(RTM), which solves the two-way wave equation forward in time for the source modeling and backward in 
time for the recorded receiver wavefield for that shot. RTM is preferable to the one-way WEM for imaging 
complex geological structures, where steep dips, turning waves, and prism waves must be properly 
handled. But large amounts of memory are required as the entire wavefield has to be calculated at each 
time step. Further, it is computationally expensive as the cost is proportional to the fourth power of the 
maximum frequency. 
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One of the differences between the one-way WEM and RTM is that at every depth step one-way WEM 
calculates the  wavefield only at that depth step and RTM calculates the entire wavefield at every time step. 
Hence the one-way WEM is more efficient and RTM is more accurate and generates a better image. The 
natural question is can we solve the two-way wave equation by extrapolating the wavefield along the depth 
axis as well as frequency-slice-by-frequency-slice as the one-way WEM does, while having the image at 
any reflector dependent on the entire source and receiver wavefields – in other words, to produce an image 
comparable to RTM at a cost comparable to the one-way WEM. This is what I describe here. 

Theory  

My approach is to create an extrapolator to perform  the upward continuation  from the bottom depth. This 

first computes the ratio PPz /  using the absorbing boundary condition viPPz //   in Clayton and 

Engquist (1980). Then source and receiver wavefields are downward continued from the surface similar to 

the one-way WEM. In effect, the entire wavefield is involved in this downward contination, as it uses PPz / .  

Calculation of PPz /  does not involve surface information and can thus be used for calculating both source 

and receiver wavefields.   

For simplicity I consider the 2D two-way acoustic wave equation 
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where P  is the acoustic wavefield and v  the velocity. Extending the method to 3D is straightforward.    

Assume the velocity is a constant in the interval ),( 00 zzz  . Applying a temporal and spatial Fourier 

transform, the partial differential equation (1) becomes an ordinary differential equation 
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where  is the angular frequency, xk is the horizontal wavenumber, and zk  given as 
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vertical wavenumber (we will continue to denote the wavefield as P  even though it is now in the 

frequency-wavenumber domain). The square of the vertical wavenumber 
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zk is assumed to be 

nonnegative, since a negative value means that the wave is evanescent and can be ignored here. With 

knowledge of )( 0zP , the wavefield at zz 0 can be derived from the equation (2) as 
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Unlike most methods which must calculate  )( 0zPz  described in Maji, Gao, Abeykoon, and Kouri (2012) 

and Sandberg and Beylkin (2009), this approache first calculates )(/)( 00 zPzPz  for the entire wavefield. 

We begin at max0 zz  with the absorbing boundary condition vizPzPz /)(/)( maxmax   and then upward 

continue to the surface. Once PPz /  is known everywhere, equation (4) coupled with the surface boundary 

condition lets us downward continue the wavefield to any depth. 
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When velocities vary laterally, a few copies of the wavefield P and the ratio PPz /  in the wavenumber 

domain with several reference velocities are calculated at each depth step and are then inverse Fourier 
transformed to the spatial domain. These are then interpolated between two calculated reference 
wavefields and ratios, similar to the ”phase shift plus interpolation” one-way WEM. 

Calculation of PPz /  is the only extra cost over the one-way WEM, and as a result the computational 

expense is one and half times that of the one-way WEM.  

Examples 

Figure 1 shows a cross-section of a 2D velocity model  meant to simulate the foothills of the Canadian 
Rockies. Figure 2 shows the RTM taken from in Shragge (2014). Figure 3 shows our new up-and-down 
continued two-way WEM. Some dipping events can be seen from in the latter that fail to appear in RTM. 
The image is especially improved near the spatial boundaries. 

Final Remarks 

I have described a novel two-way WEM that has the computational efficiency of the one-way WEM but the 
imaging capabilities of RTM. A  critical problem with RTM is that the cost goes up as the fourth power of the 
maximum frequency, which in practice means we are restricted to producing low-frequency images. This 
new method may overcome this limitation. 

Results are encouraging, but they show low-frequency artifacts (although which we might be able to 
suppress them through postmigration processing.) and linear artifacts near surface  Angle gathers and 
anisotropy will be addressed in the future work, and techniques such as split-step and Fourier finite 
difference during the upward and  downward continuation steps might be other options to handle lateral 
velocity variations.  
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Figue 1.  A velocity model  simulating the foothills of the Canadian Rocky Mountains. 

 

 
Figure 2.  Reverse-time migration. 

 

 
Figure 3.  Up-and-down continued wave-equation migration. 

 

 


