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Summary  

We use the Full-Newton multi-parameter full waveform inversion method to determine the elastic constants 
of an HTI medium. We explain the physical meaning of the first-order and second-order terms in the multi-
parameter Hessian and propose to calculate the second-order term by using a backpropagation technique 
with a multi-parameter second-order virtual source. The Full-Newton method has a better convergence rate 
than the Gauss-Newton method because it suppresses the artifacts caused by the second-order scattered 
energy in the data residuals, which is verified using a 2D HTI numerical example. 

Introduction 

In recent years, the full waveform inversion (FWI) method has become popular for estimating subsurface 
parameters (Tarantola, 1984; Virieux and Operto, 2009; Warner et al., 2013; Margrave et al., 2011; 
Margrave et al., 2010). The method uses full wavefield information during the inversion by iteratively 
minimizing the difference between the modelled and observed data. FWI can also be used to estimate 
fracture properties when fractured reservoirs are considered as equivalent anisotropic media. We focus on 
inverting for the elastic constants in HTI media using Full-Newton multi-parameter FWI. 

In mono-parameter FWI, the steepest-descent methods ignore the Hessian preconditioner resulting in a 
blurred and poorly-scaled update. The Hessian operator acts as a deconvolution operator to compensate 
for geometrical spreading at each image point, to de-blur the gradient and to suppress the second-order 
scattering effects (Pratt et al., 1998; Pan et al., 2014; Pan et al., 2014a, 2014b). Inverting for multiple 
parameters using multi-parameter FWI is more challenging. The gradient-based updates in multi-
parameter FWI also suffer from the cross-talk problem caused by the coupling effects of the different 
physical parameters (Operto et al., 2013; Innanen, 2014a, 2014b). The off-diagonal blocks of the multi-
parameter approximate Hessian indicate the correlation of partial derivative wavefields with respect to two 
different physical parameters, which can mitigate the cross-talk phenomena for multi-parameter FWI. 

The gradient is also contaminated by the second-order scattered energy in the data residuals. Pratt et al. 
(1998) discussed the second-order term in the mono-parameter full Hessian, which accounts for the 
second-order scattering effects, can be calculated by correlation between the second-order partial 
derivative wavefields with the data residuals. The second-order term in the mono-parameter Hessian can 
also be calculated using a backpropagation technique (Fichtner and Trampert, 2011). The second-order 
term in multi-parameter Hessian becomes more complex and the second-order partial derivative 
wavefields may be caused by the perturbations of more than one physical parameter. Incorporating 
these second-order terms for preconditioning the gradient can eliminate the second-order scattering 
effects in the gradient. What’s more, the adjoint sate method can also be employed for calculating the 
second-order term. In this paper, we first, analyze the roles of the first-order and second-order terms in 
multi-parameter FWI with a 2D HTI case. Then, we focus on calculating the second-order term in multi-
parameter full Hessian and apply the Full-Newton multi-parameter FWI for elastic constant inversion in 
HTI media.  

http://www.baidu.com/link?url=Z7QVLqkodzLnUPDliItIiy4jwcjnEV0EaAOuVcNTpQ3&ie=utf-8&f=8&tn=baidu&wd=MIT&inputT=1006
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Theory and Method 

In this section, we will illustrate the multi-parameter update using a 2D HTI model, which can be described 

by 4 elastic constants ( 33c , 55c , 11c  and 13c ) . Thus, the model perturbation vector in multi-parameter Full-

Newton FWI can be expressed as: 
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where , 0,r=(   )x y z  indicates the position of the model parameter, the model perturbation vector δm  and 

gradient vector g  consist of 4 elements corresponding to the 4 elastic constants: 
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where the symbol "†"  means transpose. The full Hessian matrix H  has 4 diagonal blocks corresponding 

to the second-order partial derivative of the misfit function with respect to the same physical parameter 
and 12 off-diagonal blocks corresponding to the second-order partial derivative of the misfit function with 
respect to two different physical parameters. It can be expressed as: 
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The full Hessian H can be written as the summation of the first-order term H  (approximate Hessian) and 

a second-order term H : 

H=H H.                                                                     (4) 

Each element in the approximate Hessian  is the correlation of two first-order partial derivative wavefields 

and the each element in the second-order term H  is the correlation of second-order partial derivative 

wavefields with the data residuals. For example, the element 3355( )H r, r'  in the off-diagonal block matrix 

3355H  and the element 3355( )H r, r'  in the off-diagonal block matrix 3355H  can be expressed as: 
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where the symbol "*"  means complex conjugate and d  is the data residual vector. The element 

3355( )H r, r'  is the correlation of the first-order partial derivative wavefields due to 33c  at r  with the first-

order partial derivative wavefields due to 55c  at r' . 
2 †
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 indicates the second-order partial 

derivative wavefields and it is formed when the first-order partial derivative wavefields due to 33c  at r is 

second-order scattered due to 55c  at r' . To calculate the second-order term in the multi-parameter 

Hessian, a total of 2( ) / 2p mN N
 
forward modelling problems need to be solved, where mN is the number 

of node points and pN  is the number of physical parameters assigned to describe each node. To reduce 

this computational burden, consider the first-order partial derivative wavefields due to ( )im r : 
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where L  is the impedance matrix, i indicates the physical parameter type, and the interaction of the 

background wavefields with the model perturbation serves as the first-order virtual source  
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Taking partial derivative with respect to ( )jm r'  on both sides of equation (6) forms the multi-parameter 

second-order partial derivative wavefields: 
2 2
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where jm  means physical parameter different from im . We can then substitute equation (7) into the 

second-order term H . For example, element 3355( )H r, r'  in equation (5) becomes: 

† 1 †
3355 3355( ) ( ) *

r, r' f L dH  ,                                                          (8) 

where 3355f  means the second-order multi-parameter virtual source due to 33c and 55c . Thus, the 

second-order term in the multi-parameter Hessian can also be constructed using the adjoint state 
technique and the computational cost is reduced to 2 p mN N . 

Examples 

In this section, we first give a numerical example to illustrate the multi-parameter Hessian. The 2D HTI 
model is a 30x30 model with grid size of 5 m in both horizontal and vertical dimensions and 4 elastic 

constants ( 33c , 55c , 11c  and 13c ) are used to describe each node. The initial model is elastic and isotropic 

with elastic constants 33 14.06GPac  , 55 6.32GPac  , 11 14.06GPac  and 13 1.42GPac   (density 32.0g/cm  ). 

 

Figure 1. The multi-parameter approximate Hessian H  for the 4 elastic constants. 

Figure 1 shows the multi-parameter approximate Hessian H for elastic constants 33c , 55c , 11c  and 13c . We 

can see that the multi-parameter approximate Hessian is a 3600x3600 square and symmetric matrix. It 
has 4 diagonal blocks and 12 off-diagonal blocks and each block is a 900x900 square matrix. We can 
see that the multi-parameter approximate Hessian is banded due to finite frequency effects and the 

diagonal block 3333H  dominates the matrix. This is because 33c  directly relates to P-wave velocity and the 

first-order partial derivative wavefields recorded at the top surface caused by 33c  is much stronger than 

those due to other elastic constants. The stronger amplitudes in the off-diagonal blocks means the stronger 
cross-talk between different physical parameters.  

Figure 2 shows the multi-parameter full Hessian plotted in model space. Figures 2a, b, c and d show the 

555th row in the diagonal blocks 3333H , 5555H , 1111H  and 1313H  of the multi-parameter Hessian. Figures 2 

e, f and g show the show the 555th row in the off-diagonal blocks 3355H , 3311H  and 3313H . Figures 2 h, i, j 

and k show the 555th row in the diagonal blocks 3333H , 5555H , 1111H  and 1313H  of the second-order term. 

Figures 2l, m and n show the 555th row in the off-diagonal blocks 3355H , 3311H  and 3313H  of the second-

order term.  Figures 3a, b and c show the model perturbations for elastic constants for 33c  with first-order 

term preconditioning when increasing the model perturbations from 10% to 20% and 30%. Figures 3d, e 
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and f show the model perturbations for elastic constants for 55c  with first-order term preconditioning 

when increasing the model perturbations from 10% to 20% and 30%. We can see that with increasing 
model errors, the artifacts caused by second-order scattered energy become more obvious.  

 
 Figure 2. The first-order and second-order terms in the multi-parameter full Hessian plotted in model space. 

 

 Figure 3. The estimated model perturbations contaminated by second-order scattering effects. 

 
 Figure 4. The estimated elastic constants perturbations using Gauss and Full-Newton multi-parameter FWI. 

We then apply the Gauss-Newton and Full-Newton multi-parameter FWI on a more complex model. 

Figures 4a, b, c and d show the true perturbations for elastic constants 33c , 55c , 11c  and 13c .Figures 4e, f, 

g and h show the estimated model perturbations for different elastic constants using Gauss-Newton 
multi-parameter FWI after 10 iterations. Figures 4i, j, k and l show the estimated model perturbations 
using Full-Newton multi-parameter FWI iterations. It can be seen that the Full-Newton method can 
estimate the model perturbations better for incorporating the second-order term in the multi-parameter 
Hessian. 

Conclusions 

We have incorporated the second-order term in multi-parameter full Hessian is for inverting for the elastic 
constants in HTI media. Compared to the Gauss-Newton method, the Full-Newton method can estimate 
the model perturbations more efficiently by suppressing the multi-parameter second-order scattering 
effects. 
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