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Summary

Geophysical inverse problems are typically ill-posed and require a priori information to estimate a
meaningful solution. If the unknown model is assumed to contain edges and sharp features, total
variation (TV) regularization can be applied to retrieve a solution that present sharp boundaries. In
this paper, we cast the seismic tomography inverse problem as a `2− `1 least squares problem with
total variation regularization. We make a substitution to change the problem into a form that can be
solved using the alternating direction method of multipliers (ADMM). Testing the method with noisy
synthetic VSP traveltime data results in an edge-preserving model that approximately matches the
true model. Similar results are obtained when we apply the method to the inversion of the classical
Dix equation.

Introduction

Seismic tomography is an imaging technique that can be used to determine the Earth’s velocity-
structure. First, the image is separated into sections that are assumed to be have the same material
properties. Then, using measurements made of seismic waves passing through the subsurface, the
properties of these sections are determined. Clearly, seismic tomography is an inverse problem.
Like other geophysical inverse problems, the data used in seismic tomography is contaminated with
unknown noise. As a result, infinitely many subsurface models satisfy the same set of observations
and the inverse problem is said to be ill-posed.

A common approach to solving many geophysical inverse problems is to cast them as regularized
least squares problems. One such example is Tikhonov regularization (Tikhonov and Arsenin, 1977),
which is often used to choose the smoothest solution that satisfies the data. Smooth solutions are
computationally inexpensive and can be appropriately used to solve many inverse problems, such as
vertical seismic profiles (Lizarralde and Swift, 1999).

While smooth solutions can be justified in many settings (Constable et al., 1987), they are not always
appropriate. This is the case when imaging geological interfaces with strong acoustic velocity con-
trasts (e.g. salt bodies). In these situations, we expect to see sharp boundaries and interfaces in the
model. Therefore, a better choice of regularization is to look for a blocky solution, i.e., one that allows
for edges and sharp features. This is precisely the goal of the total variation regularization proposed
by Rudin et al. (1992).

In this paper, we apply the alternating direction method of multipliers to seismic tomography with total
variation regularization. We test the method with noisy synthetic vertical seismic profile (VSP) and
common mid-point (CMP) traveltime data.
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Total variation regularization

Let d be a N x 1 vector of seismic data, L be a data kernel of size N x M, m be a subsurface model of
size M x 1 and n be additive noise of size N x 1, where N and M are the number of observations and
model parameters, respectively. Then the seismic data can be found from the forward problem

d = Lm+n. (1)

In reality, we are more interested in the inverse problem (tomography), i.e., finding m of size M x 1 for
a known d and L and an unknown n. Because the noise is unknown, we cannot uniquely solve for
m. Regularization is therefore necessary to stabilize the problem. Casting the inverse problem as a
least squares problem gives us

min
m

R(m)+µ||Lm−d||22, (2)

where ||.||2 is the `2 norm, R(m) is a regularization function and µ is a tradeoff parameter. In the case
with total variation regularization, we set

R(m) =
N

∑
i=1
||Dim||11, (3)

where ||.||1 is the `1 norm, D is a N x N first difference operator and Di is the ith row of D. The solution
to the inverse problem is therefore

min
m

n

∑
i=1
||Dim||11 +

µ

2
||Lm−d||22. (4)

Setting yi = Dim transforms (1.4) into the constrained problem

min
m,y
{

n

∑
i=1
||yi||11 +

µ

2
||Lm−d||22 : yi = Dim}. (5)

The inverse problem is now in a form that can be solved iteratively using the alternating direction
method of multipliers.

Alternating direction method of multipliers

The alternating direction method of multipliers was first proposed by Glowinski and Marrocco (1975)
and Gabay and Mercier (1976). The method provides a fast iterative scheme for solving optimization
problems of the form

min
x,z
{P(x)+Q(z) : Ax+Bz = c}, (6)

where P and Q are convex functions. The alternating direction method of multipliers proposes to
solve (6) by looking for saddle points of the augmented Lagrangian function

LA (x,z,λ )≡ P(x)+Q(z)+λ
T (Ax+Bz− c)+

β

2
||Ax+Bz− c||22, (7)

where λ is an estimate of the Lagrange multiplier, β is the dual update length and the superscript T
denotes the transpose. This leads to the iterative scheme


xk+1← arg min

x
LA (x,zk,λ k),

zk+1← arg min
z

LA (xk+1,z,λ k),

λ k+1← λ k−β (xk+1−Dzk+1),
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where k denotes the iteration number.

Applying ADMM to the TV regularized seismic tomography problem (7) results in the augmented
Lagrangian function

LA (m,y,λ )≡
N

∑
i=1

(
||yi||11−λ

T
i (yi−Dim)+

β

2
||yi−Dim||22

)
+

µ

2
||Lm−d||22. (8)

Starting with x = xk and λ = λ k, we iterate as follows:


yk+1← arg min

y
LA (mk,y,λ k),

mk+1← arg min
m

LA (m,yk+1,λ k),

λ k+1← λ k−β (yk+1−Dmk+1).

In Tao and Yang (2009), the authors recast the minimizations as closed form solutions:

yk+1
i = max

{∣∣∣∣Dimk +
1
β
(λ k)i

∣∣∣∣− 1
β
,0
}
◦ sgn

(
Dimk +

1
β
(λ k)i

)
, (9)

mk+1 =

(
DT (yk+1− 1

β
λ

k)+
µ

β
LT d

)
(DT D+

µ

β
LT L)−1, (10)

where “◦” and “sgn” are the piece-wise product and and signum function, respectively. After updating
y and m, λ is updated as

λ
k+1← λ

k−β (yk+1−Dmk+1). (11)

All that remains is to define a convergence criteria. The authors of Tao and Yang (2009) use the
relative change in the model as a test for convergence, i.e.,

||mk+1−mk||22
max{||mk||22,1}

< ε, (12)

where ε is the point of convergence. To summarize, the alternating direction method of multipliers is
given by the following algorithm:

Algorithm 1 ADMM

Input: d, L, µ, β and λ0. Initialize m = d and λ = λ0.

While not converged,Do
(1) Update yk+1 with (9)
(2) Update mk+1 with (10)
(3) Update λ k+1 with (11)

End While

Model selection

Up to this point, we have established that ADMM can be used to solve TV regularized tomography
problems for a given µ and β . The problem then is to find the value of µ and β that produce the
model that best fits the observed data. In Constable et al. (1987), the authors choose the best model
according to the weighted least squares criterion. The idea comes from the assumption that the
data are independent measurements of random variables, meaning the residual error should follow a
Gaussian distribution. Consequently, if we define χ2 as

χ
2 =
||Lm−d||22

σ2 , (13)
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where σ is the standard error of the noise, then the best solution is the one that results in a value of
χ2 closest to N, the number of observations. In other words, E[χ2]=N.

In Tao and Yang (2009), the authors find that the quality of the inversion has little relevance to the
value of β . It is therefore reasonable to choose β based entirely on the speed of convergence of
the ADMM algorithm. As a result, the problem of choosing the best model is reduced to choosing
the best value of the tradeoff parameter, µ. Therefore, a good approach is to iteratively increase (or
decrease) µ until χ2 matches N with an acceptable level of misfit.

We set the point of convergence for the ADMM algorithm to be at ε = 10−11. Increasing the precision
beyond this point results in no appreciable increase in the accuracy of the inverse solution. Of course,
the selection of ε largely depends on the computational power available and the goal of the inversion.

Example: VSP traveltime inversion

We demonstrate the effectiveness of ADMM for solving the TV regularized inverse problem by using
noisy synthetic VSP traveltime data. We begin by defining a 1-dimensional velocity model that com-
prises 6 horizontal layers. The theoretical survey uses 500 equally spaced receivers lowered into a
borehole and a source placed at the Earths surface at 0m offset. Direct-arrival traveltime data is then
computed for each receiver. Finally, we contaminate the traveltime data with Gaussian noise with
standard error σ = 1ms.

To set the problem up according to equation (1), we define d as the noisy direct-arrival traveltimes, L
as the causal integration operator multiplied by the receiver spacing and m as the unknown acoustic
reciprocal velocity model. The inverse problem is clearly ill-posed. We choose to implement total
variation regularization to select the best edge-preserving model. Trial and error reveals that setting
β = 4500 allows the ADMM algorithm to converge to a blocky solution in a relatively minimal number
of iterations.

After approximately 1000 iterations, the ADMM algorithm converged to the inverse solution shown
in Figure 1. Unlike the smooth inversion, the TV regularized inverse model predicts most of the
interfaces and interval velocities that are present in the true model. The figure also highlights the fact
that the noise level limits the resolution of the model. This is best observed at shallow depths, where
the true traveltime signal is small and may be overwhelmed by the random noise. TV regularization
can interpret this as having additional non-real layers.
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Figure 1: Inverted vertical seismic profile using TV regularization and smooth regularization.
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Figure 2: Dix inversion example. (a) True subsurface model. The deepest layer was assigned an
acoustic velocity of zero as a reminder that the properties of this layer cannot be recovered. (b)
Inverse model found using TV regularization. The model consists of layers that are nearly uniform.

Example: Dix equation

The classical Dix equation relates root-mean-square (RMS) velocities to interval velocities for a hori-
zontally layered section. The relationship is given by

V 2
RMS =

p
∑

n=1
V 2

n ∆t0,n

t0,n
, (14)

where p is the number of layers to the nth interface, Vn is the acoustic velocity of the nth layer, ∆t0,n is
the zero-offset two-way traveltime through the nth layer and t0,n is the zero-offset two-way traveltime
for the nth reflection. We can rewrite the equation in the form shown in (1) by setting d = t0,nV 2

RMS, L
as the causal integration operator and m =V 2

n ∆t0,n.

Dix equation can be used to solve for a 1-dimensional subsurface model based on data from 1 CMP.
However, we propose to use Dix equation to image a 2-dimensional subsurface comprised of 5 folded
layers. 1 CMP will not be sufficient to resolve the folded strata. Instead, we propose to concatenate
the results of 50 equally spaced CMPs. We solve each CMP according to Dix equation, subject to a
lateral edge-preserving condition as enforced by total variation regularization.

We begin by computing synthetic data. We calculate true RMS velocities and then contaminate them
with random noise with a standard error of 5m/s. Similarly, the zero-offset two-way traveltimes for the
nth reflection, t0,n, are computed by contaminating the true t0,n’s with Gaussian noise with a standard
error of 2ms.

Infinitely many models can satisfy the CMP traveltime data. We choose total variation regularization
to look for the edge-preserving model that best fits the data. Trial and error reveals that setting
β = 80000 allows the ADMM algorithm to converge to a blocky solution in a relatively minimal number
of iterations. Figure 2 shows the results after approximately 700 iterations. The shape and acoustic
velocities of the folded layers approximately resemble the true model. The figure also shows that TV
regularization was successful at recovering an edge preserving model.

Conclusion

In this paper, we have discussed the application of the alternating direction method of multipliers
to seismic tomography with total variation regularization. This ultimately required recasting the TV
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regularized inverse problem as a constrained `2− `1 least squares problem, which could then be
solved iteratively. Experimental results for VSP and CMP traveltime data confirm that the method
converges to an accurate solution. The speed of convergence for the method could likely be improved
with the addition of an automated selection of the dual update parameter β .
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