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Summary 

Elastic Full Waveform Inversion (FWI) is an iterative method that simultaneously uses seismic travel time 
and amplitude to recover subsurface elastic properties. This work is intended to reduce the computational 
cost associated with Finite Difference Time Domain (FDTD) forward modeling and Reverse Time Migration 
(RTM)-based techniques used in FWI method. Therefore, we propose a method which makes use of 
prestack time migrations (PSTM) of multicomponent data and associated inversion in an iterative scheme. 
In this study, the gradient function of reflection impedance from formation boundary is obtained using 
transformation of volume integral inversion strategy of Tarantola (1986) into the surface integral Kirchhoff 
approximation.  

Introduction 

The procedure of FWI by FDTD operators has been the subject of much research and in particular the 
computational time burden (Vigh and Starr, 2008) is an ongoing challenge. Attempts were made to improve 
the computational efficiency by implementing cheaper numerical schemes for forward modeling and 
migrations. The asymptotic Born approximations of wave equation are shown to be an efficient strategy in 
iterative inversion algorithms (Beydoun and Mendez,1989, Jin et al., 1992, Thierry et al., 1999 , Lambare et 
al., 2003 and Operto et al., 2003). In this paper, an inversion method based on Kirchhoff approximation has 
been developed. The Kirchhoff approximation considers the differential of model parameters across 
bedding interfaces compared to the Born approximation that considers variation of model parameters with 
a reference medium. Consequently, the shape of perturbation in Born approximation is step-like while the 
shape perturbation in Kichhoff approximation (e.g., reflectivity function) is spike-like with respect to 
reflectors normal vector (See e.g., Beylkin and Burridge, 1985, Jaramillo and Bleistein, 1999, Kroode, 2013 
and Shaw and Sen, 2004). For the inversion, the steepest descent inversion scheme and the gradient 
functions are obtained by setting the inversion of the data residual and updating the operators at each 
iteration. Here, first perturbation of Born approximation is compared to Kirchhoff approximation. Then, the 
technique is applied on gradient function of Tarantola (1986) for P- and S-waves impendance.  

Born approximation vs Kirchhoff approximation  

Consider an isotropic medium, with true elastic properties true true true true( , , )m λ μ ρ , that can be described 

by perturbation in elastic properties ( , , )m λ μ ρ    using  

 

true 0

true 0

true 0

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

  

  

  

  

 

 

x x x

x x x

x x x

 (1) 

where ( ) x  stands for density, ( ) x  and ( ) x are elastic constants of the stiffness tensor, ijklc . The 

subscript ‘true’ refers to the true model to be found and the subscript ‘0’ refers to the initial model to be 

updated and used as input to subsequent iterations. The vector = (x, y,z)x  is the subsurface coordinate 

and the terms  ,   and   are the perturbations of the elastic properties which contain the higher 
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frequencies of the true model. In our problem, the terms  ,   and  are assumed to generate the 

perturbation of the total scattered elastic wavefield,  s r
δd , ,tx x , from the medium, where

s
x  and 

r
x  

refer to the source and receiver locations. The single scattered wavefield components of the elastic 
waves can be expressed by (Beylkin and Burridge, 1990)  

 2 ( )d ,IR IR I R I R

jk t lm jl kmd A A t       S x  (2) 

where, IR

lm
S  is the scattering matrix, superscripts I  and R  refer to incident and reflected waves, the 

subscripts jk  indicate the displacement in the k - direction due to a point force in the j  direction. 

Generally, the derived angle-dependent scattering potentials S  has the form  
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where, S
IR

ki
 is defined as  

 
0 0

( )( )
,

( ) ( )

ijklIR R I

ki ik j l

c xx
S p p

x x




 
   (4) 

where p  is slowness unit vector parallel to the path of the rays. Equation (4) is a general description of 

the scattering potential for various types of waves. Coupling the definition of the stiffness, 
ijklc , for the 

type of model, e.g. elastic, isotropic and anisotropic, with the slowness, p , as well as the polarization 

vectors, h , of the incident and scattered waves has been the basis for modeling and inversion from the 

amplitude radiation pattern of the wavefields (Shaw and Sen, 2004).  

Formulation of Born and Kirchhoff approximation are asymptotically similar given a smooth error (Beylkin 
and Burridge, 1990, Jaramillo and Bleistein, 1999, Shaw and Sen, 2004 and Kroode, 2012).As shown in 

Figure 1 by dividing the volume integral into two upper lower volumes D
 and D

 upon reflection 
surface  , the scattering operator in Kirchhoff approximation is expressed as 
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which shows that while the radiation pattern of scattering potential of Born approximation in (4) is step-
like whereas the radiation pattern of Kirchhoff approximation is spike-like resulting from singularities over 
the surface  . 

Continuity of perturbed model in elastic Born  approximation vs Kirchhoff approximation  

A typical perturbation m  is considered in Figure 1. Note that here, 
true backgroundm m m    where, 

backgroundm  is a background model. As seen in Figure 1c, the first order Born approximation consider the 

perturbation independently from its surroundings which infers that although the background model of 
Born approximation is continuous, however, the continuity of the perturbed model with its surrounding is 
neglected at bedding interfaces by assumption of smooth surface. Continuity of perturbation across the 
bedding interface is considered in the Kirchhoff approximation as illustrated in Figure 1d, where the 

differential of both particles m 
 and m 

 with respect to layer boundary, i.e., m m     , is 

considered. Hence, for this perturbation the surface integral Kirchhoff approximation considers the 
bedding interfaces within the perturbed model. In iterative inversion algorithm, after the first iteration, the 
background model parameters are updated which produce the reflection boundaries. In this situation, 
Kirchhoff approximation is more useful for forward modeling. Consistent with forward modeling, the 
inversion is based on reflectivity function of Zoeppritz equations (Aki and Richards, 1980). Therefore, the 
boundaries of updated model produces reflection to be used in estimation of gradient function (Khaniani, 
2015).  
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Figure 1: The relationship between the a) Born approximation (volume integral) and b) the Kirchhoff 
approximation (surface integral with the Born perturbation in c) and Kirchhoff reflection boundaries in d). 

Comparison of equations (4) and (5) shows that we can transform the volume integral elastic inversion 
strategy of Tarantola (1986) into the surface integral Kirchhoff approximation. The approach is consistent 
with earth model which the change in elastic properties at formation boundaries create reflection data. 
Compared with AVO inversion that is based on radiation pattern of scatterpoints, the technique 
simultaneously uses all components of recorded data and estimates the gradient for P- and S-wave 
impedance by dilatation of the P-waves and rotation (curl) of the S-waves respectively. 

SYNTHETIC EXAMPLE  

A synthetic numerical model was created from a two layer model as shown in Figure 2. The elastic 
FDTD forward modeling (Manning, 2007) is used to produce a single shot record, with a maximum of 
1000m offset in split spread configuration with a receiver spacing of Dx=2 m. For illustration purposes an 
explosive source is positioned in depth of 700 below surface.  This helps to have primary PP and PS 
data and avoid the interference of other types of waves such as SS, SP and their multiple reflection with 
them. A zero phase wavelet with a dominant frequency of 35 Hz was arbitrarily chosen. The PSTM 

scatter point imaging of Khaniani (2015) is used for migration of PP and PS data from radial ( xU  ) and 

vertical ( zU ) components in Figure (3). Note that a time to depth conversion is used to illustrate the 

migrated data in the vector form. The background color represents the dilatation and rotation of 
multicomponent data. The continuity and intensity of dilatation and rotation are consistent with P- and S-
wave types and their strength can be correlated with reflectivity. In Figure (3a), primary PP data has 
strong dilatation before critical angle but after critical angle it also experiences rotation as seen in Figure 
(3b).This correlation can be due to change of supercritical phase or other numerical features that is 
subject to further studies. In migrated PS domain of Figure (3d) stronger rotation is observed for S-
waves. In addition, the multiple PP is observed to have stronger dilatation in Figure (3c) and weaker 
rotation values in Figure (3d) which is consistent with P-wave behavior.   
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Figure 2: The elastic two layer model with an explosion source buried at depth 
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Figure 3: Multicomponent PSTM migration and inversion of PP and PS data. The sections are converted 

to depth for illustration purposes. The vectors illustrate the migration of xU  and zU  components and the 

background color are computed dilatation and rotation values to be used as gradient function in FWI 
method. a) Dilatation of PP data b) Rotation of PP data c) Dilatation of PS data d) Rotation of PS data. 

Conclusions 

We proposed a multiparameter inversion of the elastic properties based on surface integral Kirchhoff 
approximation. The procedure is analytically compared with volume integral Born approximation. The 
approach is more realistic and stable procedure for inversion because the solution is based on reflection 
boundary. All components of recorded wavefield are simultaneously used for migration and inversion. 
The output of inversion can be used as the gradient functions for iterative FWI method. 
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