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Summary 

Ignoring the elastic anisotropy in the Earth causes many artifacts in seismic processing and 

interpretation.  To date, these issues have been ameliorated by using approximations to the full solutions 

for wave propagation and reflectivity for special material symmetries.  A Matlab™ based program 

algorithm has been written to extend these capabilities to the general case of reflectivity from the 

interface between two anisotropic slabs of arbitrary symmetry and orientation.  To achieve this, the 

algorithm solves for polarization, amplitude and slowness of all the wave modes generated by a plane 

wave incident to the interface.  In the first step, the plane-wave velocities and polarizations of all three 

orthogonal wave modes are calculated for a given incidence angle. Second, the algorithm determines the 

reflection and transmission angles of all of the possible scattered modes followed by their respective 

velocities and polarization vectors. With this information, the algorithm solves system of equations 

incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes.  We have 

tested this algorithm in deliberately non-realistic and actual cases to make sure that there is no energy 

leakage in the system of calculations. This algorithm is can be applied to the processing, imaging, and 

inversion of seismic data in anisotropic media. 

Introduction 

In this paper we introduce our algorithm which is able to calculate plane-wave reflectivity from any 

anisotropic interface which separates two anisotropic media without any limit on type of anisotropy in 

either side of the interface. Most real cases in the Earth are not horizontal transverse isotropy (HTI) and 

will be tilted TI or even more complex. Solution for reflectivity in complex anisotropic media is highly non-

linear and complicated, hence many researchers have tried to linearize the solution by introducing  

assumptions about  type of anisotropy on each side of interface.. Readers can follow up in Thomsen 

(1988, 1986) that linearized Daley and Hron’s (1977) solution using ‘weak boundary contrast’ 

assumption. Ruger (1997, 1998), Ursin and Haugen (1996) as well as various other authors extended 

this approach for PP (P-wave incident and reflected) approximation in weak elastic anisotropy and weak 

boundary contrast in TI and orthorhombic media. In this contribution we developed algorithm which is 

able to solve for reflectivity in most complex interface separating two unconditional anisotropic media. 

The algorithm is able to solve for wave polarization, slowness and amplitude ratios of all wave modes 

generated from a welded interface bounding two homogenous anisotropic slabs of arbitrary symmetry 

and orientation. A variety of tests of the algorithm with complex situations are presented to illustrate its 

capabilities and reliability. 



  

 
GeoConvention 2015: New Horizons 2 

Theory 

To calculate plane-wave properties in anisotropic medium the algorithm starts with Musgrave (1970) and 

Rokhlin et al (1986) who used the full elastic wave (Equation 1) and its plane-wave solution (Equation 2). 

(1) 

(2) 

where x, ρ and c are direction, density and stiffness matrix of the media, respectively. Hooke’s law 

relates stress (σ) to strain (ε) with stiffness matrix, σij = cijkl εkl. Also ,,n, v and k are the amplitude, the 

polarization direction, the vector normal to the plane wave front, the phase velocity, and the wave 

number of the plane-wave. Considering continuity of momentum and inertia yields a stiffness matrix with 

21 elastic parameters, which dictates the anisotropic behavior of the medium. In the lowest symmetry of 

triclinic, twenty one elastic parameters are required.  However as we increase the symmetry in the 

medium, this number drops to 11, 9, 5 and 2 for monoclinic, orthorhombic, transversely isotropic and 

isotropic, respectively (see Schmitt (2015) for a recent discussion of this). By substituting the plane-wave 

solution (Equation 2), into the wave equation (Equation 1) we reach to the equation known as Christoffel-

Kelvin(Equation 3). 

        

      (3) 

where δ is Kronecker delta operator. For a given raypath, n, nontrivial solution shows three independent 

phase velocities and polarizations for three wave modes with orthogonal polarizations known as one 

quasi-longitudinal (qP) and two quasi-shear waves (qS1and qS2). 

 

 

a                                                                 b     

Figure 1: (a) Schematic geometry of plane-wave generation from an interface separating two 

anisotropic media and incident wave with incidental direction of  and azimuthal direction of , (b)  

2D representation along azimuthal direction of  in slowness domain, showing that horizontal 

slowness of generated wave modes are equal to horizontal slowness of incident wave. 
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Our algorithm uses this step to solve for v and  of the incident wave. We must then find the direction of 

the reflected and transmitted waves from the interface. To find the directions of the generated waves, 

continuity of the displacement at the interface is used to find its slowness vector. To satisfy this condition, 

horizontal slowness of the generated wave modes must be equal to horizontal slowness of the incident 

wave, and for vertical slowness, algorithm solve 2 to find appropriate vertical slowness. Having direction 

of generated waves, speed and polarization of each wave mode is calculated using procedure explained 

at the beginning of this section. Now we have all the information about the ray paths generated from the 

anisotropic interface, except amplitude ratios. The algorithm then employs two major boundary 

conditions at the interface: the continuity of traction force () and the conservation of displacement 

(Equation 4).  

 

  

   (4) 

where η is normal to the boundary and the superscripts U and L indicate the upper and the lower 

mediums, respectively. Further details of these calculations including a Matlab™ program may be found 

in Malehmir and Schmitt (2015).  In example section, we test our algorithm by solving for the reflectivity 

from the interfaces between arbitrary two anisotropic media.  

Examples 

In this section we will show results from the algorithm solve amplitude ratios of all generated wave 

modes from some of the most difficult anisotropic boundaries. To test the algorithm strength in energy 

balancing, we tested our algorithm with virtual boundary inside a water tank, where on both sides the 

same water exists. By looking at the results from the algorithm, as one could expect, there is no energy 

leakage form the boundary and the whole energy is transmitted. Other examples which are discussed 

here are, Isotropic-HTI boundary, then extend it to interfaces with Isotropic-Orthorhombic, and finally a 

complex boundary separating Monoclinic-Triclinic, after Bass (1995), figure 2. Interested readers can 

refer to Malehmir and Schmitt (2015) for more examples and details regarding the algorithm. 
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a.                                     b.                                       c. 

Figure 2: Calculated PP reflectivity from an between (a) Isotropic-HTI contact, (b) an Isotropic- 

Orthorhombic contact, and (c) and Monoclinic-Triclinic contact with an incident angle and 

azimuthal direction from 0 to 90 degrees. High temperature ribbon indicates the critical angle 

reflection. 

 

Conclusions 

 

In this paper we developed a unified algorithm to solve for plane-wave reflectivity from an arbitrary 

anisotropic interface. The algorithm starts with calculation of key properties of all wave-modes in the 

homogenous medium such as slowness and polarization. Then, algorithm continues to find amplitude 

ratios of all generated wave modes from the interface by satisfying logical boundary conditions. We 

tested the algorithm with several scenarios in order to study precision of the calculation and energy 

leakage at the interface. This algorithm is capable of handling models with strong low symmetry 

anisotropic media up to triclinic anisotropy. This algorithm is free from any non-realistic assumption and 

is not limited to any type of anisotropy. Future works will be dedicated to apply this algorithm in seismic 

data migration and inversion to achieve higher quality images from the anisotropic Earth. 
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