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Summary

We discuss the implementation of the Parallel Matrix Factorization (PMF) algorithm, an SVD-free
tensor completion method that is applied to 5D seismic data reconstruction. The Parallel Matrix
Factorization (PMF) algorithm complements and expands our first generation of 5D tensor completion
codes based on High Order SVD and Nuclear norm minimization. We review the PMF method and
explore its applicability via tests with a 5D field data reconstruction example.

Introduction

Reconstruction methods that are based on rank reduction techniques are becoming popular in seis-
mic data processing. These methods can mainly be divided into two sub-categories. One category of
methods applies rank reduction to a block Hankel matrices formed by the entries of observed seismic
data in the frequency-space domain. Methods in this subcategory are often named Cadzow (Trickett
et al., 2010) or Multichannel Singular Spectrum Analysis reconstruction (Oropeza and Sacchi, 2011;
Gao et al., 2013). A second category of methods are based on dimensionality reduction of multilin-
ear arrays or tensors. Example of the latter are High Order SVD (HOSVD) reconstruction (Kreimer
and Sacchi, 2011, 2012), Tucker decomposition (Herrmann and Silva, 2013), nuclear norm minimiza-
tion method (Kreimer et al., 2013) and tensor SVD (Ely et al., 2013). The common feature of these
method is that they all utilize the SVD algorithm to reduce the rank of the data tensor. For large-scale
seismic data reconstruction problems, the cost of the SVD algorithm inhibits the more widely usage
of low rank tensor completion methods for industrial applications.

We analyze the Parallel Matrix Factorization (PMF) algorithm proposed by Xu et al. (2013). The PMF
method does not utilize SVDs. We show that PMF is an effective algorithm to recover missing traces
from large 5D volumes.

Theory

The PMF reconstruction method is implemented in midpoint-offset frequency domain. We denote
the data by D(ω,x,y,hx,hy), where x, y, hx and hy indicate the spatial coordinates and in the inline
midpoint, crossline midpoint, in-line offset and cross-line offset. After binning the data in midpoint-
offset domain, single frequency data D(ω,x,y,hx,hy) can be represented by a 4th-order tensor D ,
with elements Di1,i2,i3,i4 , where i1, i2, i3, i4 are bins indices for the spatial coordinates x,y,hx and hy,
respectively. We remove the dependency on ω to simplify the notation. The reconstructed data are
obtained by minimizing a cost function of the form

Φ = ΦC +µ ΦM , (1)

where, ΦM is the data misfit term, ΦM = 1
2‖P ◦Z −D‖2

F , P is the Nth-order sampling operator tensor
with elements 1 for the observed samples and 0 for the missing samples. Z is the Nth-order low rank
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tensor representing the reconstructed data (the unknown of our problem). The functional ΦC is the
low rank constraint term that is defined as follows

ΦC =
1
2

N

∑
k=1
‖X(k)Y(k)−Z(k)‖2

F , (2)

where, Z(k) is the mode-k unfolding matrix of the tensor Z . The low rank matrix factorization is applied
to each mode unfolding of Z by seeking matrices X(k) ∈ CIk×rk and Y(k) ∈ Crk×I1...Ik−1Ik+1...IN such that
Z(k) ≈ X(k)Y(k) for k = 1, . . . ,N, where rk is the rank of the unfolding matrix Z(k). In order to solve X(k),
Y(k) and Z , we minimize the cost function Φ and apply the alternating least-squares algorithm

Xi+1
(k) = Zi

(k)(Y
i
(k))

H , k = 1, . . . ,N, (3a)

Yi+1
(k) = ((Xi+1

(k) )
HXi+1

(k) )
†(Xi+1

(k) )
HZi

(k), k = 1, . . . ,N, (3b)

Z i+1 = (I −αP)◦C +αD , (3c)

where, the parameter α = µ

N+µ
, I is the Nth order tensor with all entries equal to 1 and C is given by

C =
1
N

N

∑
k=1

foldk[Xi+1
(k) Yi+1

(k) ] . (4)

The preceding analysis corresponds to the case where data are contaminated with noise. The noise-
free data reconstruction case is tackled by finding the minimum of the following cost function

Φ =< W ,P ◦Z −D >+ΦM (5)

where < A ,B >=
I1

∑
i1=1

. . .
IN

∑
iN=1

Āi1...iN Bi1...iN . Using the method of Lagrange multipliers, the solution of

equation 5 is given by

Z = (I −P)◦C +D . (6)

Expression 6 is equal to expression 3c for the particular case when α=1. It is interesting to no
mention that equation 3c resembles the typical imputation algorithm used for reconstrustruction via
POCS (Abma and Kabir, 2005) and Cazdow (Trickett et al., 2010; Gao et al., 2013) methods.

Synthetic example

The first example is a 5D seismic data that consist of I1×I2×I3×I4 spatial traces with Ik = 6,8,10,12,14,
k = 1,2,3,4 and 301 time samples per trace. The data include three linear events and S/N = ∞.
We randomly remove 50% of the traces and perform the reconstruction using the proposed PMF
algorithm, the HOSVD algorithm and the nuclear norm minimization method. For the PMF and
HOSVD methods, we adopt a rank rk=3 for all modes (k = 1,2,3,4), the maximum number of it-
erations is set to Niter = 100, and an iteration stopping error tol = 10−4 is adopted for each fre-
quency, respectively. For the nuclear norm method, we set Niter=100, tol = 10−4 and the param-
eters λ = 2.5, β = 15 (see, Kreimer et al. (2013)) Table 1 shows the compassion of the compu-
tational cost of the three methods. For each iteration, the computational cost of PMF method is
O(N(3mnr +mr2 + 2nr3

3 )). For the nuclear norm method, the cost is O(N(2m2n+ 2m3)) per iteration
and for the case of the HOSVD, the computational cost is O(N(4m2n+ 13m3 +mr3(N−1))). Where
m = Ik = max{I1, I2, . . . , IN}, r = rk = max{r1,r2, . . . ,rN}, n = I1I2 . . . Ik−1Ik+1 . . . IN and N represents the
order of seismic data tensor. From table 1, we observe that the PMF algorithm is faster than the
nuclear norm minimization algorithm and the HOSVD algorithm. We also choose a synthetic data
model containing 12× 12× 12× 12 traces in the spatial directions and 301 time samples per trace
which is also used in table 1 to examine the reconstruction quality of the proposed PMF algorithm,
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HOSVD reconstruction and the nuclear norm minimization reconstruction method. We define the
reconstruction quality Q = 10 log10 (

‖D true‖2

‖D true−D recon‖2 ) where D true and D recon represent the true noise-free
complete data and reconstructed data in the time-space domain. Table 2 shows the comparison of
the reconstruction quality versus the percentage of missing traces. From Table 2, we find that the
reconstruction quality obtained by the proposed PMF method and HOSVD algorithm are very similar.
They both perform better than the nuclear norm minimization method. For the third example, we
synthesize a noise-free data with four events with strong curvature. The spatial size of the data is
12×12×12×12 with 301 time samples per trace and S/N = ∞. We randomly decimated 90% of the
traces and set the rank r1 = r2 = r3 = 5 for modes 1,2,3 and r4 = 4 for mode 4. We also set Niter = 300,
tol < 10−4 and α = 1. Figure 1 shows the reconstruction result. From error section in Figure 1d,
one can observe that missing traces were accurately recovered. We also add random noise to the
noise-free data in Figure 1 to analyze the reconstruction capability our the algorithm in the presence
of noise. We set S/N = 1, Niter = 300, tol < 10−4 and α = 0.51. Figure 2 shows the reconstruction
result.

Ik
Cost (secs)

PMF HOSVD Nuclear norm
8 49.8 814.1 74.1
10 74.7 919.3 159.3
12 117.9 1077.1 307.4
14 195.1 1259.4 569.6

Table 1: Computational time comparison of the proposed PMF reconstruction method, the HOSVD
method and nuclear norm method for different 5D volumes with size of 301× I1× I2× I3× I4, Ik =
8,10,12,14, k = 1,2,3,4.

Decimation [%]
Reconstruction quality Q

PMF HOSVD Nuclear norm
60 62.6 62.7 16.8
70 61.1 61.3 9.7
80 60.6 60.7 6.5
90 39.9 31.3 3.0

Table 2: Reconstruction quality Q versus percentage of missing traces for the PMF, HOSVD and
Nuclear norm reconstruction methods with data size Ik = 12.
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Figure 1: Data reconstruction results with rank r1 = r2 = r3 = 5, r4=4, α=1.0 and 90% missing traces.
A slice of the synthetic 5D volume with size 301×12×12×12×12 is portrayed. In this case SNR = ∞.

GeoConvention 2015: New Horizons 3



0

0.4

0.8

1.2

T
im

e
 (

s
)

     (a) Original data           (b) Decimated data      (c) Reconstructed data            (d) Difference

Figure 2: Noisy data reconstruction result with S/N=1.0, rank r1 = r2 = r3 = 5, r4=4, α=0.51 and 90%
missing traces. A slice of the synthetic 5D volume of size 301×12×12×12×12 is portrayed.
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Figure 3: Field data example (WCB). (a) Distribution of sources and receivers. (b) Fold map.

Field data example

Based on the above synthetic data analysis, we tested the performance of PMF reconstruction
method on a land data set obtained from a heavy oil field in the WCB (Figure 3). The data are
first binned on a 5m× 5m CMP grid and a 100m× 100m Offset-x-y grid prior to interpolation. The
reconstruction area includes 300 CMPx bins and 220 CMPy bins. We divide the whole survey data
into 2640 overlapping blocks. Each block has about 85% missing traces. We set rk = 4, k = 1,2,3,4,
Niter = 100 and α = 0.40 for the PMF reconstruction. Figure 4a and 4 b shows a zero offset slice of
5D volume by fixing CMPy bin 730, hx bin 4 and hy bin 11. Figure 4c and 4 d show a zero offset slice
of 5D volume by fixing CMPx bin 1555, hx bin 4 and hy bin 11 before and after reconstruction.

Conclusions

We have presented a SVD-free method for multidimensional seismic data reconstruction. The pro-
posed PMF method applies low rank matrix factorization to mode unfoldings of the seismic data ten-
sor and applies an alternating minimization algorithm to estimate the complete data tensor. Contrary
to other low rank reconstruction methods, PMF does not require the SVD algorithm. The latter makes
the PMF algorithm attractive for industrial implementations. We compared the proposed method to
two methods that were developed by our group (HOSVD and minimum Nuclear Norm reconstruc-
tion). We conclude that the proposed 5D data completion PMF method is faster than our previously
reported algorithms for tensor completion.
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Figure 4: Real data reconstruction result for zero offset. A subset of the 5D data is portrayed. (a)
CMPx gather at CMPy bin 730, hx bin 4 and hy bin 11 before reconstruction. (b) The reconstructed data
of (a) via PMF method. (c) CMPy gather at CMPx bin 1555, hx bin 4 and hy bin 11 before reconstruction.
(d) The reconstructed data via the PMF method.
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