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Summary 
Common image gathers are used in building velocity models, inverting anisotropy parameters, and 
analyzing reservoir attributes. Often primary reflections are used to form image gathers and multiples are 
typically attenuated in processing to remove strong coherent artifacts generated by multiples that interfere 
with the imaged reflectors. However, researchers have shown that, if cor- rectly used, multiples can 
actually provide extra illumination of the subsurface in seismic imaging, especially for delineating the near-
surface features. In this work, we borrow ideas from literatures on imaging with surface-related multiples, 
and apply these ideas to extended imaging. This way we save the massive computation cost in separating 
multiples from the data before using them during the formation of image gathers. Also, we mitigate the 
strong coherent artifacts generated by multi- ples which can send the migration velocity analysis type 
algorithms in wrong direction. Synthetic examples on a three-layer model show the efficacy of the proposed 
formulation. 

Introduction 
An extended image is a multi-dimensional correlation of source and receiver wavefields, as a function of all 
subsurface offsets (see Sava and Vasconcelos, 2011, and references therein for a recent overview). There 
are many different applications in which extended images are used extensively like construction of angle-
domain common-image gathers (ADCIGs) and migration velocity analysis (MVA) (Biondi and Symes, 2004; 
Shen and Symes, 2008; Symes, 2008; Sava and Vasconcelos, 2011; Kumar et al., 2013, 2014). Other 
than that, extended images are used to study the rock properties and fluid indicators by estimating the 
amplitudes of reflected waves as a function of incident angle at the interface. One of the current limitations 
is that the extended imaging conditions cannot handle multiple reflections. However, Lu et al. (2014) 
showed that primaries may not provide enough illumination to image near-surface targets. To overcome 
this situation Lu et al. (2014) proposed to use multiples only data where they apply the same imaging 
condition to multiple-only data by putting in the primaries as source and the multiples as receivers. 
However, efforts during seismic data processing to extract multiple wavefields are always challenging, 
computationally expensive and can risk damage to the underlying signal. Therefore, to mitigate these 
impediments and to get benefit from the multiples, we follow earlier work on joint imaging of primaries and 
surface-related multiples (Tu et al., 2013; Tu and Herrmann, 2015) and adapt it to extended imaging which 
potentially leads to better images. The idea is to combine EPSI (Estimation of Primaries via Sparse 
Inversion) (van Groenestijn and Verschuur, 2009) with migration as a way to benefit from surface-related 
multiples. Following the same ideas, we show that we can exploit the EPSI relationship while forming the 
image gathers. As a result, we need to move to a least-squares extended imaging rather than a simple 
correlation-based imaging condition. The proposed way of imaging the surface-related multiples along with 
primaries do not increase the dominant computational cost, which is the solution of the wave-equation. 
Finally, we show the efficacy of the proposed formulation on a three-layer synthetic velocity model. 

Extended imaging with free-surface multiples 
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Given the time-harmonic source and receiver wavefields as matrices U and V, extended images at a single 
frequency, for all subsurface offsets and for all subsurface points can be written as the outer product of 
these two matrices, i.e., we have 

E = VU∗,                                                                               (1) 
where U,V are calculated using the two-way wave-equation and each column of U,V corresponds to a 
source experiment. The explicit expression of E can be written as  

E = H−∗Pr
TD0Q∗PsH−∗,                                                                   (2) 

where H is a discretization of the Helmholtz operator (ω2m+∇2), m is the squared slowness, the matrix Q 
represents the source function, ∗ represents the conjugate-transpose, D0 is the primary reflection data 
matrix and the matrices Ps, Pr sample the wavefield at the source and receiver positions (and hence, their 
transpose injects the sources and receivers into the grid). Note here that H−1 involves PDE solves and 
constitutes the main computational cost in equation (2). In order to incorporate multiples along with primary, 
we follow the SRME (surface-related multiple estimation) formulism proposed by Verschuur et al. (1992) 
where the total upgoing pressure wavefield D (note that we overload D to denote the total upgoing data 
now), the Green’s function and the source are related as follows 

D = G(Q - D),                                                                        (3)  
where G represents the Green’s function, P the total up-going wavefield, -D represents the down-going 
receiver wavefield at the surface (note that the minus sign in the front comes from the surface reflectivity, 
assumed to be -1) that acts as a generalized areal-source wavefield for the surface-related multiples and Q 
is the down-going point-source wavefield. In this expression, we assume that the source is the same for all 
shots, i.e., Q = qI. Note that each quantity in the above expression represent monochromatic variables. 
Therefore, we can replace the primary reflections data matrix in equation(2) with the total up-going data 
matrix P and redefine extended image E as 

E = H−∗Pr
TD(Q − D)∗PsH−∗,                                                           (4)  

In 2D, the extended image is a 5-dimensional function of all subsurface offsets and temporal shifts. So 
even in this case, it is prohibitively expensive to compute and store the extended image for all the 
subsurface points. To overcome this problem, we select l columns of E implicitly by multiplying this matrix 
with the tall matrix W = [w1,...,wl] yielding, 

E’ = EW,                                                                                (5) 
where wi = [0, . . . , 0, 1, 0, . . . , 0] represents a single scattering point with the location of 1 corresponding 
to the ith grid location of a point scatterer. Each column of E’ represents a common-image point gather 
(CIPs) at the locations represented by wi. We follow van Leeuwen and Herrmann (2012) to efficiently 
compute E’ by combining equations (4) and (5) as 

E’ = EW = H−∗Pr
TD(Q−D)∗PsH−∗W.                                                      (6)  

As we can see the computational cost of calculating E’ is 2l PDE solves plus the cost of correlating the 
areal-source and the data matrices. Thus, the cost of computing the CIPs does not depend on the number 
of sources or the number of subsurface offsets, as it does in the conventional methods for computing 
image gathers (Sava and Vasconcelos, 2011). This is particularly beneficial when we are interested in 
computing only a few CIPs. Here, equation (6) defines an extended migration operator that maps the total 
up-going data matrix to an extended image. The corresponding extended demigration operator, F  , is 
defined as 

F   (E’) = PrH-1E’((Q−D)*PsH-*W)*,                                                        (7) 
where F    is a linear operator w.r.t the sources. To compute reliable amplitudes for extended image, we 
estimate the least-squares extended image by solving 

minimizeE’ 1/2*∥D − F   (E’)∥2
F ,                                                            (8)  

where ∥∥2
F is the Frobenius norm of the matrix (sum of the squared entries). In the above expression we 

assume that Q is known, however, in the proposed framework Q can be estimated as well (Aravkin et al., 
2013). 
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Examples 
To test the proposed algorithm for computing common-image point gathers, we use a synthetic three- layer 
velocity model (with a grid sampling of 10 m) as shown in Figure 1(a). This model is used to generate 
seismic data. We placed the sources and receivers on the surface with a spatial interval of 10m. We use a 
finite-difference frequency-domain code to generate the synthetic data sets. The source signature is a 
Ricker wavelet with a peak frequency 10 Hz. Figure 1(b) shows the velocity model used to form the least-
squares reverese-time migration (RTM) and common image gathers (CIGs). We perform 15 iterations of 
LSQR to invert RTM and equation 8. We construct common-image gathers (CIGs) at x = 1000m for all z. 
Figures 2(a), 3(a) show the least-squares RTM and CIGs when we only use the primary reflection data D0 
and Q as the source function. As expected, RTM image and image gather is fully focused when using the 
correct velocity model. Next, we use the total up-going (primaries and multiples) data D and still use Q as 
the source function. Since multiple reflection data are not properly dealt with during the imaging condition 
so acausal artifacts created by multiples destroy the focusing of image point gathers as shown in Figures 
2(b), 3(b). Finally, we form the RTM image and image gathers where we use the total up-going data D 
along with the areal source function Q − D. We can see (Figures 2(c), 3(c)) that by including the areal 
source in extended imaging, we can mitigate the acausal artifacts. 
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Figure 1 (a)True velocity model. (b) Background velocity model used in extended imaging.
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Figure 2 Least-squares reverse-time migration. (a) Primary data only. (b) Total up-going data is used
but areal source is not used. We can clearly see the ghost reflector when we do not use the areal source.
(c) Total up-going data is used along with the areal source. Incorporation of areal source remove the
ghost reflector.

Results

To test the proposed algorithm for computing common-image point gathers, we use a synthetic three-
layer velocity model (with a grid sampling of 10 m) as shown in Figure 1(a). This model is used to
generate seismic data. We placed the sources and receivers on the surface with a spatial interval of
10m. We use a finite-difference frequency-domain code to generate the synthetic data sets. The source
signature is a Ricker wavelet with a peak frequency 10 Hz. Figure 1(b) shows the velocity model used to
form the least-squares reverese-time migration (RTM) and common image gathers (CIGs). We perform
15 iterations of LSQR to invert RTM and equation 8. We construct common-image gathers (CIGs) at
x = 1000m for all z. Figures 2(a), 3(a) show the least-squares RTM and CIGs when we only use the
primary reflection data and Q as the source function. As expected, RTM image and image gather is
fully focused when using the correct velocity model. Next, we use the total up-going (primaries and
multiples) data P and still use Q as the source function. Since multiple reflection data are not properly
dealt with during the imaging condition so acausal artifacts created by multiples destroy the focusing of
image point gathers as shown in Figures 2(b), 3(b). Finally, we form the RTM image and image gathers
where we use the total up-going data P along with the areal source function Q�P. We can see (Figures
2(c), 3(c)) that by combining EPSI and extended images into one problem, we can mitigate the acausal
artifacts.
Conclusions

In this abstract, we have demonstrated how can we incorporate the surface-related multiples along with
the primary reflection data to get benefit from the extra illumination of the subsurface. This will lead
to a conceptual transition from multiple removal to using multiples in the future while working with
extended images. Since formation of extended images for all subsurface offsets and all subsurface
points is computationally very expensive, we compute image gathers for a few subsurface points without
explicitly computing the source and receiver wave fields for all the sources. The main benefit of this
approach is that the computational complexity mainly depends on the number of image points and not
on the number of sources or desired number of subsurface offset samples. Future work is to test the
proposed formulation on the realistic field data set and extend this work to migration velocity analysis
(MVA) to better construct the velocity models using both primary and multiple reflections.
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Conclusions 
In this abstract, we have demonstrated how can we incorporate the surface-related multiples along with the 
primary reflection data to get benefit from the extra illumination of the subsurface. This will lead to a 
conceptual transition from multiple removal to using multiples in the future while working with extended 
images. Since formation of extended images for all subsurface offsets and all subsurface points is 
computationally very expensive, we compute image gathers for a few subsurface points without explicitly 
computing the source and receiver wave fields for all the sources. The main benefit of this approach is that 
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the computational complexity mainly depends on the number of image points and not on the number of 
sources or desired number of subsurface offset samples. Future work is to test the proposed formulation 
on the realistic field data set and extend this work to migration velocity analysis (MVA) to better construct 
the velocity models using both primary and multiple reflections. 
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Figure 3 Least-squares common-image gather extracted along x = 1000m and for all z. (a) Primary
data only. (b) Total up-going data is used but areal source is not used. (c) Total up-going data is used
along with the areal source. We can clearly see the effect of ghost reflectors (in middle) which is removed
(in right) via incorporating the areal source.
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