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Summary  
Time-lapse images void of acquisition and processing artifacts can provide more useful information about 
subsurface changes compared to those with acquisition footprints and other unwanted anomalies. 
Although, several pre-processing techniques are being developed and used to mitigate these unwanted 
artifacts, these operations can be very expensive, challenging and data dependent. Migration, as a 
processing tool, using a sparsity constraint has been shown to reduce artifacts drastically but little is 
known about the significance for compressed time-lapse seismic data. Leveraging ideas from distributed 
compressed sensing, and motivated by our earlier work on recovery of densely sampled time-lapse data 
from compressively sampled measurements, we present a sparsity-constrained migration for time-lapse 
data that uses a common component shared by the baseline and monitor data. Our algorithm tested on a 
synthetic example highlights the advantages of exploiting the common information, compared to ad hoc 
methods that involve parallel processing of the time-lapse data before differencing. 

 

Introduction 
Time-lapse seismic data comprising a baseline and at least one monitor data provides information 
about subsurface changes over a period of time [Lumley, 2001]. While effort is made to repeat the 
acquisition geometry or/and processing of the data [Kragh and Christie, 2002], challenges still 
persist with interpreting the final time-lapse difference. Therefore, it is essential to develop 
techniques that can improve the results on existing and new time-lapse data. One standard 
approach in processing time-lapse data is the amplitude differencing analysis where the baseline 
and monitor data are subtracted to reveal the time-lapse signal, at each processing step. This 
method can be very delicate especially when there are acquisition or/and processing artifacts in 
the data. Johnston [2013] gives an excellent review of many of the some of the challenges faced 
from acquisition to processing of time-lapse data. Commonly referred to as the parallel 
processing method, this approach does not consider any dependence between the baseline and 
monitor data. To address the challenges of processing time-lapse data, several joint processing 
methods have been proposed (e.g. Ayeni et al. [2012]). The main idea in these methods is to use a 
prior information in the baseline data while processing the monitor data. However, none of these 
methods have been applied in the context of compressive sensing. In addition, most of these 
methods rely on the availability of a densely sampled baseline data. In this work, we present a 
new tool for processing time-lapse data, which uses the shared information in the data sets 
explicitly as part of an optimization procedure. Leveraging ideas from distributed compressed 
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sensing [Baron et al., 2009], we introduce a joint recovery method that can process time-lapse 
data from compressively sampled (subsampled) measurements. Application of our method to 
migration shows significant improvement in the recovered time-lapse signal compared to similar 
parallel processing technique. 

Theory and/or Method 
In the rest of the paper, we refer to the time-lapse data as vectors x1 and x2. Consider a forward 
model for processing noise free time-lapse data 
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In the rest of the paper, we refer to the time-lapse data as vectors x1 and x2. Consider a forward model for
processing noise free time-lapse data

yj = Ajxj for j = {1, 2}. (1)
where y1 and y2 are the observed compressively sampled data. A1 and A2 are two operators that define the
processing performed on the data. Our objective is to recover good estimates of the true signals, namely the
vintages, x1 and x2. From the vintages, we can compute the time-lapse signal x1 ≠ x2; By promoting sparsity
of x1 and x2, we can get estimates of the true signals after solving the following optimization problem

x̃j = arg min
xj

ÎxjÎ1 subject to yj = Ajxj , for j = {1, 2}. (2)

Solving Equation 2 is exactly the parallel processing method that does not use any prior information from
the baseline in the monitor processing. Instead of following independent processing methods, we use ideas
from distributed compressed sensing (DCS)[Baron et al., 2009], where we decompose the signals x1 and x2
into three di�erent components. Setting x1 = z0 + z1, x2 = z0 + z2, we introduce a joint processing method
termed the joint recovery method (JRM), and solve an optimization problem for estimating the vintages and
the time-lapse signal. Using this model, we solve the following problem :

z̃ = arg min
z

ÎzÎ1 subject to y = Az, (3)
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A2 0 A2
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By adding the first column in A, we exploit the common information z0 in the time-lapse data. In the
next section we explore the performance of our JRM on migration of time-lapse seismic data and compare
the results with a similar migration routine that was performed in parallel, i.e. migration of baseline before
migration of monitor. In our example, we use the sparsity-promoting migration technique by Herrmann and
Li [2012] because it is fast, reduces migration artifacts and uses ideas based on compressive sensing. Details
of this migration algorithm will be omitted here, as it is not the main focus of this work.

3 Examples

We consider a simple layered time-lapse model with vertical discontinuities. Figure 1a shows the model
perturbations for the monitor and the time-lapse di�erence. The baseline is obtained by adding the monitor
to the di�erence. A finite di�erence acoustic code is used to generate a densely sampled baseline and monitor
data. Our objective is to produce migrated time-lapse images including the di�erence from the observed
data using the same migration algorithm. However, we will compare parallel migration with migration using
our joint recovery model. For simplicity, we assume the geometry of the baseline and monitor acquisition
is the same and we also assume we have a good background velocity model for migration. The forward
modeling parameters for the baseline and monitor data are also the same. So, in this idealized setting, we will
process (migrate) the data sets in parallel (independently) and jointly using the JRM. As stated previously,
we will adopt the sparsity-promoting migration technique of Herrmann and Li [2012]. The main idea in this
migration formulation is to use only a subset of the total acquired data at every iteration step as we update
the model perturbation. This dimensionality reduction step has been shown to speed up the migration.

For a fixed number of iterations in the migration, given the observed baseline and monitor data, we
observe the final time-lapse migrated images and di�erences via the parallel and joint methods. Figure 1c
and 1d shows the time-lapse results using the parallel method while Figure Figure 1e and 1f shows the
time-lapse results using the joint method (JRM). From the results, we notice a significant reduction in the
artifacts in the final images using the JRM compared to the parallel method. The e�cacy of the JRM is
more pronounced when we look at the time-lapse di�erence from both methods. This improvement using
JRM can be attributed to the shared information which the JRM exploits but the parallel method doesn’t.
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Examples 
We consider a simple layered time-lapse model with vertical discontinuities. Figure 1a shows the 
model perturbations for the monitor and the time-lapse difference. The baseline is obtained by 
adding the monitor to the difference. A finite difference acoustic code is used to generate a 
densely sampled baseline and monitor data. Our objective is to produce migrated time-lapse 
images including the difference from the observed data using the same migration algorithm. 
However, we will compare parallel migration with migration using our joint recovery model. For 
simplicity, we assume the geometry of the baseline and monitor acquisition is the same and we 
also assume we have a good background velocity model for migration. The forward modeling 
parameters for the baseline and monitor data are also the same. So, in this idealized setting, we 
will process (migrate) the data sets in parallel (independently) and jointly using the JRM. As 
stated previously, we will adopt the sparsity-promoting migration technique of Herrmann and Li 
[2012]. The main idea in this migration formulation is to use only a subset of the total acquired 
data at every iteration step as we update the model perturbation. This dimensionality reduction 
step has been shown to speed up the migration. 

For a fixed number of iterations in the migration, given the observed baseline and monitor data, 
we observe the final time-lapse migrated images and differences via the parallel and joint 
methods. Figure 1c and 1d shows the time-lapse results using the parallel method while Figure 1e 
and 1f shows the time-lapse results using the joint method (JRM). From the results, we notice a 
significant reduction in the artifacts in the final images using the JRM compared to the parallel 
method. The efficacy of the JRM is more pronounced when we look at the time-lapse difference 
from both methods. This improvement using JRM can be attributed to the shared information, 
which the JRM exploits but the parallel method doesn’t. 

Conclusions 
We have shown a noveau method for processsing time-lapse data that exploits the shared 
information in the data. Our method shows improved vintages and time-lapse signals after 
processing compared to ad hoc independent or parallel processing methods. We have also shown 
how we can apply our method in a migration routine that uses dimensionality reduction and 
compressive sensing ideas to speed up computations. 
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Figure 1: (a) True monitor perturbation (b) True time-lapse di�erence (c) Monitor image via parallel method
(d) Time-lapse di�erence via parallel method (e) Monitor image via joint method (d) Time-lapse di�erence
via joint method. Notice the attenuation of the artifacts with our joint method compared to the parallel
method.
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