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Summary 

Laboratory measurements are viewed as a direct way to understand the physical properties of rocks, such 
as their compressional and shear moduli and parameters of anelasticity. The moduli, Q-factors and 

densities measured in the laboratory are commonly used to compare to the seismic-wave properties 
measured in the field and to develop fluid-substitution and effective-media models. However, in laboratory 
measurements, the resulting values of frequency-dependent moduli and Q may be affected by finite 

dimensions of the specimens. The general reason for this influence is that in a finite specimen, multiple 
wave modes are always present, whereas only a single, traveling wave is used in field observations. To 
examine these effects of specimen length, we consider theoretical models of three experiments with 
elastic, viscoelastic, and poroelastic rock, by using the common specimen lengths of 10 to 20 cm. The finite 
length of the cylindrical specimen causes a reduction in the measured P-wave modulus M at higher 
frequencies. For elastic rock, the values of M and the Q are close to those for a P-wave in the field. For a 

viscoelastic material with Q 100, the values of higher-frequency M measured in the samples are 
significantly lower than the M measured from seismic wave velocities. For a poroelastic material such as 
fully-saturated sandstone, the drop in M in short samples occurs at much lower frequencies than the 
increase due to poroelastic effects. The increase of attenuation (Q-1) within short samples also occurs at 

frequencies much lower and is much steeper than the peak in poroelastic dissipation. These effects should 
be particularly strong for materials with wave-induced flows (WIFF), in which the wavelengths of the slow 
and diffusive fluid-related waves can be comparable to the length of the specimen. In such cases, the 
effects of finite sample length may significantly complicate the observation of the pore-fluid related modulus 
dispersion and attenuation.  

 

Introduction 

Laboratory experiments on rocks or drill cores are considered as the most direct way for studying 
mechanical rock properties and seismic-wave propagation characteristics, such as the P-wave/S-wave 
moduli and seismic attenuation (Spencer 2013; Tisato et al. 2014). Spencer (2013) quantitatively 
analyzed the temperature and frequency dependence of velocities and attenuation by conducting 
experiments on 11-cm long samples of Ells River bitumen sands from Alberta, Canada. Tisato et al. 
(2014) collected a large amount of data on Berea sandstone to study the attenuation caused by wave-
induced flows. In addition to laboratory experiments, numerical modelling was also utilized to explore 
seismic wave behaviour and rock properties in the lab (Rubino et al. 2009; Rubino and Holliger 2013, 
Tisato et al. 2014). Numerical modeling is a very good way to examine the proposed mathematical and 
physical descriptions of the subsurface rock (Murphy et al. 1986; Tisato et al. 2014).  

The point of the present paper is that although this is rarely noted, the moduli and Q results obtained for 

short samples may not be automatically applicable to field observations at the same frequency. This 
observation applies to both laboratory experiments and their numerical models. There are two reasons 
for these differences in the moduli: 1) finite dimensions of the specimen and 2) the presence of 
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transverse deformations requiring transforming the observed Young’s moduli into P-wave moduli. The 
first of these effects is considered in this study.   

In subresonant laboratory measurements, the samples are normally much shorter than the seismic 
wavelengths. However, for longer samples of porous, fluid-saturated rock (as in Tisato et al. 2014)  at the 
high-frequency end of the band, the length of the sample may become comparable to the wavelengths of 
Biot’s slow P waves, and particularly of similar modes associated with wave-induced flows (WIFF) within 
the rock. In a finite rock sample under a dynamic loading experiment, multiple wave modes traveling in 
both directions are present, and the interference of these waves may result in measurements different 
from those in traveling waves in the field. In this paper, four numerical modelling experiments are 
undertaken to illustrate the effects of the finite sizes of the samples on the measurements of elastic 
moduli and Q.   

Method 

Consider a schematic experiment with axial loading of a cylindrical rock sample in the laboratory 
(Figure 1). The bottom of the specimen is fixed, and to the top, pressure p is applied. Note that the 
effective modulus Meff measured in this experiment is not automatically a stress/strain ratio but a ratio of 
the applied pressure, p, to the average strain of the specimen: 
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where u the displacement of the upper end, and L is the length of the sample (Figure 1). This effective 
modulus Meff is a constant when p is a static loading pressure. To study the frequency dependence of 

Meff, and the corresponding attenuation Q, consider a dynamic loading pressure 0

i tp p e  , where  is 

the angular frequency.  This pressure will generate a standing wave within the cylinder, consisting of two 
(for a viscoelastic material) or four (for the poroelastic case) several wave modes traveling in the upward 
and downward directions: 
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where An is the amplitude and kn is the wavenumber of n-th mode, x is the distance along the sample, 

and t is the time. Let us denote the spatial dependence of u by   nik x

n nu x A e . From eq. (2), the spatial 

distribution of strain within each mode equals: 
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For each mode, the axial stress   n x  can be evaluated from its strain by using the appropriate 

viscoelastic or poroelastic equations. This relation can be expressed through a “modulus” Mn for the 

mode: 

   n n nx M x         (4) 

From eq. (1) the measured effective modulus can be written as a superposition of stresses and 
displacements of the wave modes: 
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Thus, the oserved empirical modulus is not a pure material property but an average of the moduli Mn for the 

wave modes weighted by the strains and displacements of these modes.  

Model Experiments 
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In the following model experiments, we calculate the effective modulus in eq. (5) for four key types of 
materials.  For simplicity, we consider a pure P-wave deformation case, in which all displacements occur 
along the axis of the cylinder.  

Elastic Solid 

Consider an elastic cylinder with a P-wave modulus M, which would the modulus measured as 
2

PM V  

in a P-wave in a bound less medium.  Within a finite cylinder, a standing wave is formed consisting of a 

wave traveling downward with amplitude that we denote A  and another wave traveling upward, with 

amplitude A . The moduli Mn for both of these waves equal M. Since the bottom of the cylinder is fixed, 

these amplitudes are related by A A  .  From eqs. (3) and (5), we therefore have: 

 coteffM MkL kL       (6), 

where k is the wavenumber. For a short cylinder, 1kL , and we can use a Taylor-series approximation: 
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Figure 2 shows the variation of this ratio with frequency and specimen length L. The effective modulus 
Meff is approximately equal M at low frequencies, with an approximately 2% drop at 1 kHz. At frequencies 

above 1 kHz, the modulus drops sharply. The frequencies at which the drop in effM M  occurs are 

inversely proportional to the length of the specimen. 

Viscoelastic Solid 

For a viscoelastic material, the wave mode content and boundary conditions are the same as for an 
elastic solid. Therefore, eq. (6) remains valid, with both moduli M and Meff becoming complex-valued.  

In this experiment, we construct a viscoelastic solid model with a near-constant Q  100 by using five 
Maxwell-solids (Figure 3). Both moduli and attenuation factors are in a good agreement below about 
1 kHz. At higher-frequencies, the values of Meff measured in the samples are significantly lower than the 
M measured from seismic wave velocities. At the same time the bias in the inverse Q due to the finite 

length of the sample is small (Figure 3). 

Poroelastic Solid 

In contrast to the cases of elastic and viscoelastic materials, four P waves are excited in a poroelastic 
cylinder: the fast P-wave Biot slow P-wave traveling upward and similar waves travelling downward. In 
this experiment, additional boundary conditions are required for fluid flow; we consider the case of 
impermeable (jacketed) boundaries on all sides of the cylinder.  

By evaluating expressions (2), (3), and (5) for sandstone in Biot’s poroelasticity, we obtain the short-
sample effective modulus shown in Figure 4. In this case, the modulus of the primary P wave is taken as 
the traveling-wave modulus M. Within the seismic frequency band, the moduli M and Meff agree with each 

other. Above about 1 kHz, the effective modulus drops sharply. Note that the attenuation peak in a 
poroelastic media commonly occurs in the ultrasonic frequency band; however, the effect of finite sample 
size occurs at much lower frequencies (Figure 4). 

Poroelastic Solid With Squirt Flow 

Squirt flows and WIFF are is considered the major cause of attenuation within the seismic sonic-log 
frequency bands (Rubino and Holliger, 2013). Similarly to the poroelastic case, four P waves are excited 
within the cylinder, and the boundary conditions are also the same as in the poroelastic case. However, 
an additional, lower-frequency attenuation peak appears in the primary-wave attenuation (Figure 5). This 
peak around 100 Hz is due to squirt flows. The effect of the finite size of the specimen again leads to the 
measured modulus dropping and the attenuation increasing above about 1 kHz.  
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Conclusions 

The differences between the effective elastic moduli and Q measured in the lab and in the field are 

examined by numerical modeling. For an elastic material, the discrepancy is small, with only 2-3% 
difference for typical sample sizes and within the seismic frequency band. For a viscoelastic material, the 
difference is increased, so that the dispersion curve for the effective modulus does not reach the unrelaxed 
modulus measured in the field. For poroelastic rock with squirt flows and WIFF, the difference between the 
lab and field moduli is further increased, particularly by the effects of diffusive slow waves within the finite 
specimen.   
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Figure 1. Schematic model for the three numerical experiments with rock samples in the lab. 
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Figure 2. Frequency dependence of the effective modulus in an elastic cylinder of length L.  

 
Figure 3. Effective modulus (left) and attenuation variation (right) in a viscoelastic cylinder. Red lines are dependences for 

unbounded media, red lines – for a cylinder of 11-cm length. 

  
Figure 4. Models of effective modulus (left) and attenuation (right) measured in a poroelastic cylinder. 

 
Figure 4. Models of effective modulus (left) and attenuation (right) measured in poroelastic solid with squirt flow. 


