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Summary  

Through their anisotropic signature, fractures can be remotely detected using the P-wave seismic 
amplitude variation with offset and azimuth (AVOAz) technique.   One of the issues in estimating the 
fractures is correctly determining their orientation.  The near-offset AVOAz inversion is non-unique with 
two solutions 90 degrees apart.  This paper explores the use of information from larger incidence angles 
and constraints to solve this problem.  By themselves larger angles are not the solution. The key is in 
incorporating geologic information such as the regional stress field and rock physics constraints.  

Introduction 

In this study a method to solve the seven-parameter linearized AVOAz inversion is demonstrated. The 
approach is valid for both transverse anisotropic media with a horizontal symmetry axis (HTI), and 
vertical fractures in an isotropic (VFI) background medium. The seven parameters to be estimated 
include: three background parameters such as density, P-wave and S-wave impedance reflectivity; and 
four anisotropic parameters including an orientation parameter. The HTI Rüger equation (1998) is a 
subset of this problem.  One of the key elements in solving the seven-parameter inverse problem is 
determining the azimuth of the symmetry axis in the case of HTI media, or of the fracture normal in the 
case of VFI media.  For brevity both azimuths are referred to in this paper as the symmetry axis azimuth 

fsym.  

The inverse problem is nonlinear.  Similar to the solution of the near-offset HTI Rüger equation the 

solution is bimodal.  This nonuniqueness manifests itself as a 90 degree ambiguity in the estimate of fsym. 

This ambiguity potentially biases the remaining six parameters.  Through the introduction of constraints 
based on rock physics relationship or geologic control the most likely solution may be chosen.  

I begin by reviewing the seven-parameter AVOAz equation and parameterizations specific to HTI and 
VFI media. The linearized AVOAz expression is then written in terms of azimuthal Fourier coefficients 
(FCs) (Downton et al., 2011) in order decompose the problem into simpler parts for analysis.  The 
solution of the near-offset linearization is next reviewed with the objective of introducing the symmetry 
axis ambiguity.  It is shown that a priori knowledge of the regional stress field may be used to 
preferentially choose one solution over the other.  Having reviewed the near-offset case, the more 
complex far-offset problem is discussed and shown to exhibit the same ambiguity.  In this case 
constraints based on the rock physics of fractured media are employed to help resolve the ambiguity. 
Both synthetic and real seismic data examples are shown to illustrate the method.        

Linearized seven-parameter AVOAz 

The seven-parameter HTI and VFI P-wave reflectivity, which varies as a function of incidence angle q 

and azimuth f, may be written as the Fourier series (Downton and Roure, 2015)    

( ) () () ( )( ) () ( )( ).4cos2cosr, 420 symsym rrR ffqffqqqf -+-+=    (1) 

where in the linearized form, only the magnitudes of the sinusoids of periodicity n = 0, 2 and 4 are 
nonzero.  The magnitudes in equation (1) are 
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where the definitions of the parameters A0, B0, C0, B2, C2 and C4 depend on the form of the anisotropy 
and are described in Downton and Roure (2015).  This paper focuses on the B2, C2 and C4 parameters 

since they control the Amplitude variation with Azimuth (AVAz).  In HTI media aniBB 5.02 = , 

)(

2 25.0 vC eD=  and
()vC .16/14 hD=  The parameter Bani is the anisotropic gradient, e(v) is the Thomsen 

parameter describing the P-wave anisotropy and h(v) represents the anellipticity (Rüger, 2002). All the 

parameters are evaluated at the interface generating the reflectivity with the symbol D denoting the 
difference operator between the lower and upper medium.  The phase of the sinusoids is controlled by 

the symmetry axis azimuth fsym. In the case of VFI media, the parameters B2, C2 and C4 are 
parameterized in terms of fracture weakness parameters.  Rotationally asymmetric fractures give rise to 
orthorhombic anisotropy. The medium is described by the vertical, horizontal and normal fracture 

weakness parameters dV, dH and dN respectively.   The transformation linking these parameters is   
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where g is the squared S-wave to P-wave velocity ratio of the background media.   The case of rotationally 
symmetric fractures gives rise to HTI anisotropy.  In this case, both the vertical and horizontal fracture 

weaknesses are equal and are replaced by the single parameter, the tangential fracture weakness dT. 

Linearized AVOAz Inversion 

In order to solve the linearized AVOAz inverse problem it is easier to write the Fourier series in terms of 
cosine (un) and sine (vn) functions, where n refers to the periodicity of the sinusoid.  Rewriting equation 
(1) in block matrix notation and in terms of the sine and cosine FCs results in 
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where x=sin2(q) and z= sin2(q)tan2(q).  All the bold faced vectors are functions of incidence angle q.  

Although written as a set of linear equations, equation (6) is actually nonlinear due to the fsym dependence 
in the linear operator.  A brute force method to solve this system of equations is to iterate over all possible 

values of fsym solving the least squares problem for each possible fsym. The solution corresponding to the 

fsym with the minimum misfit is the global solution. 

However, the solution is nonunique since it is bimodal. This is more obvious if only the equations describing 
the AVAz are considered, namely 
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In the near-offset approximation, the z= sin2(q)tan2(q) terms are ignored resulting in  
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It can be seen by substitution that both ‰ ȟπȢυ"  and ‰ “ςϳȟπȢυ"  fit the data equally 

well.  Typically, only one of the solutions is output.  Figure 1a and 1c show the estimated anisotropic 

gradient Bani and symmetry axis fsym corresponding to the positive Bani solution for a 3D seismic inline.  The 
azimuth solution oscillates 90 degrees between different layers and hence appears nonphysical.  Another 
approach is to make use of local geologic information to constrain the solution.  Zoback (2007) observes 
that the horizontal stress field changes slowly in a regional sense.  For stress-induced anisotropy the slow 

direction corresponds to the direction of minimum horizontal stress (i.e. fsym).  If this orientation is known 
from local well control or from the world stress map (Heidbach et al, 2008) then this information may be 
used to constrain the solution.  In this case, the solution is chosen which is most consistent with the 
minimum horizontal stress direction.  The symmetry axis azimuth for this solution is shown in Figure 1b.  By 
definition, it fits with the known geologic information much better.   A further consequence is that Bani has 
both positive and negative values which again are more geologically believable.  

 
Figure 1.  The (a) anisotropic gradient Bani, (b) stress constrained symmetry axis and (c) symmetry axis calculated 
using the positive Bani solution. 

Similar to the near-offset case, the solution to the far-offset equation (7) has two solutions, 

‰ ȟ"ȟ#ȟ#  and ‰ “ςϳȟ"ȟ#ȟ# , as can be seen by substitution.  Constraints again 

may be used to reduce the solution space.  Downton et al., (2011) assumed the anisotropy is due to 
vertical rotationally symmetric fractures.  Under this assumption, equation (7) becomes  


