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Summary  

Full waveform inversion (FWI), which is a highly nonlinear inverse problem, use full waveform information 
to build high resolution subsurface structures. However, FWI is usually solved iteratively as a local 
optimization problem, and during each iteration, the gradient is ususally obtained from the Born 
approximation, which indicates a linear relationship between the scattering points and scattered wavefields. 
Mitigating linearization error, or to say including nonlinearity, during each updates can be important to 
improve both FWI results and convergence rates. In this paper, we study a nonlinear gradient by including 
higher order Born series into the conventional gradient. Numerical examples show the new nonlinear 
gradient can help building a better model especially in the deeper regions and help FWI converge faster.  

Introduction 

By minimizing the misfit between recorded data and modeled data, full waveform inversion (FWI) (Lailly, 
1983, Tarantola, 1984) has become an attractive tool to build high resolution velocity model. Although 
waveform changes are highly nonlinear with respect to the model parameter changes, the FWI problem 
is usually treated as a local optimization problem, and solved iteratively by a linearized version of the 
nonlinear problem at each step. During each iteration, a local gradient is calculated to solve the local 
optimization problem and this gradient is usually studied in the framework of Fréchet derivative, or 
sensitivity kernel, generally derived under the Born approximation, which indicates a linear relationship 
between the model perturbations and the change of the waveform.  

In FWI, several iterations are needed for the inversion to converge toward the minimum of the misfit 
function, and nonlinearity is mainly mitigated through iterations and multi-scale strategies. Linearization 
error could be significant in many cases (Wu and Zheng, 2014), especially when large-scale 
perturbations are involved. As shown in recently applications of FWI (Virieux and Operto, 2009), FWI can 
successfully build high resolution models for shallow regions, which are sampled mostly by diving waves 
and post-critical reflections. However, in the deeper regions, which are usually sampled by small-angle 
backscattered data, such as pre-critical reflections, FWI behaves more like a migration, which can only 
build the high wavenumber components of the subsurface models. After Xu et al. (2012) revisited the 
FWI theory to develop a new gradient to better handle the inversion of low wavenumber components of 
the model sampled by pre-critical reflections, several work has been done to better handle the 
linearization errors respond to small-angle backscattered data by developing different kinds of gradient 
(Wu and Alkhalifah, 2015, Zhou et al., 2015). 

In this paper, following Innanen’s work (2014, 2015), to include nonlinearity into each iteration, we study 
a nonlinear gradient by including higher order Born series into the conventional gradient. At each iteration, 
the gradient is constructed not only from the updated model itself but also a perturbation as well. By 
adding this perturbation, a range of scattering processes can be included in the gradient, each involving 
one interaction with to-be-determined perturbation and multiple interaction with the added perturbation. 
This added perturbation is highly related to the data residual, and can be determined using a linear 
inversion method. Numerical examples based on this nonlinear gradient are shown to verify the 
nonlinearity are added correctly, with faster convergence rate and better inversion results. 

Theory and Method 
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In this paper, the space-frequency domain isotropic acoustic wave equation with constant density is used 

to describe the wave motion with the squared slowness parameter  s r . At each iteration, FWI is to 

minimize the misfit function,  
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which involves the data residual  , , |g s nP s r r  between recorded data  , ,g sP r r  and modeled data 

 , , |g s nG sr r , by updating the given initial model  ns r  with a perturbation  ns r  to approach the real 

model  s r . The gradient of the misfit function, used to calculate the perturbation, can be calculated with 

the sensitivity G s   and the complex conjugate of the data residual 
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FWI is a highly nonlinear problem, since the relationship between the wavefield and model parameter is 
nonlinear. One direct way to help mitigating this nonlinearity is to have broadband seismic data with 
wide-offset range and very good initial model before starting the FWI procedure, however, even with 
different types of misfit definition proposed (van Leeuwen and Mulder, 2008, Brossier, Operto, and 
Virieux, 2015), the gradient used to update the model is still obtained under the Born approximation. The 
other way to mitigate the nonlinearity is taking multiple forward scattering into account. Suppose that the 

at n+1th iteration, the updated model is determined by      1n n ns s s  r r r  , when adding a small 

variation  s r  localized at r  to 1ns  , the perturbation wavefield caused by this added variation can be 

written as 
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where the first term can be interpreted as scattering process involving one interaction the added variation 

 s r  only, and the higher order terms can be interpreted as multiple interactions with  ns r  and one 

interaction with  s r . The sensitivity of G  respect to  s r  can then be written as 
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Substituting sensitivities (4) back to the gradient (2), we can get a nonlinear gradient which contains 
higher order Born series as 
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It is obvious that when  ns r  is zero, the nonlinear gradient (5) is equivalent to the conventional 

gradient at nth iteration. Perturbation  ns r  is highly related to the data residual, so instead of 

calculating  ns r  during FWI, we use a linear inversion to calculate  ns r  first in each iteration before 

calculating gradient (5). 
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Examples 

We first show the single frequency sensitivity in the case of a homogeneous model with one reflector as 
in Figure 1. The conventional kernel (Figure 1a) is calculated in the homogeneous model without the 
reflector, and the nonlinear kernel (Figure 1b) is calculated in the homogeneous model with the reflector 

as the perturbation  ns r . It can be seen that compared to the conventional kernel, which has the 

forward scattering between source and receiver along the first Fresnel zone at the shallow depth and the 
back scattering along the secondary Fresnel zones as the outer fringes in the deeper regions, the added 
two terms in the nonlinear kernel build two more first Fresnel zones between both source and receiver to 
the reflector, which can further provide the ability to update the low wavenumber components of deeper 
part of the model. 

      

Figure 1: Single frequency sensitivity kernel in a homogeneous model with one reflector. a) Conventional 
sensitivity; b) nonlinear sensitivity. Yellow line indicates the reflector, blue, cyan and red lines stands for 

related wave paths. 

 

The Marmousi model is used to perform the synthetic test of FWI with the nonlinear gradient. The true 
model is shown in Figure 2a, we add a 500m water layer on the top of the model. We use a linearly 
increasing model as the initial model, which is exact at the added water layer, but changes linearly along 
depth direction from 1.5km/s to 4km/s, as shown in Figure 2b. We use 461 fixed receivers and 46 
sources along the surface to generate data for 5 frequencies (2Hz, 3.3Hz, 5.5Hz, 9Hz and 14.9Hz) for 
the inversion. Figure 2c shows the inversion result from FWI with conventional gradient with 10 iterations 
for each frequency, and Figure 2d shows the inversion result from FWI with nonlinear gradient with same 
iterations. Velocity profiles along x = 4km, 6km are shown in Figure 3. Since the initial model is far away 
from the true velocity model, we update the velocity at the water layer in this test. However, even with 
frequency as low as 2Hz, conventional FWI can only reconstruct rough structures of the model, but 
nonlinear gradient FWI gives accurate high resolution result even at the deeper regions. Figure 4a shows 
the norm of data residual vector vs. number of iterations, and Figure 4b shows the relative model least-
squares error vs. number of iterations. It is observed that FWI with nonlinear gradient converges faster 
than FWI with conventional gradient. 

 

   

   

Figure 2: a) True Marmousi velocity model; b) initial velocity model; Inversion result with conventional 
gradient and b) nonlinear gradient d) with 10 iterations for 5 frequencies starting from 2Hz to 15Hz. 
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Figure 3: Velocity profiles along a) x = 4km and 
b) x = 6km. 

 

Figure 4:  a) Norm of data residual vector vs. 
number of iterations; b) relative model least-
squares error vs. number of iterations.

Next, we use uniformly sampled 12 frequencies between 4Hz to 15Hz to perform FWI with both 
conventional and nonlinear gradient with the same initial model as in Figure 2b. Figure 5a shows the 
inversion result from conventional gradient with 10 iterations for each frequency, and Figure 5b shows 
the inversion result from nonlinear gradient with same iterations. Velocity profiles along x = 4km, 6km are 
shown in Figure 6.  With the conventional gradient, velocity is updated incorrectly, especially at the 
shallow area around z = 1km to 1.5km along vertical profile x = 4km and deeper area along the vertical 
profile x = 6km, where inversion with nonlinear gradient provides a fairly good result. 

  

 

Figure 5: Inversion results using a) conventional 
gradient, b) nonlinear gradient with 10 iterations 
for 12 frequencies starting from 4Hz to 15Hz. 

      

Figure 6: Velocity profiles along a) x = 4km and 
b) x = 6km. 

Conclusions 

In this study, by including both zero order and higher order terms in the calculation of sensitivities, we 
have constructed a nonlinear gradient to better handle nonlinearity in FWI, which can provide a better 
update to the model and converges faster than FWI with the conventional gradient. The inversion results 
of the Marmousi model with different frequency bands illustrate the nonlinear gradient FWI can build 
better velocity model in deeper regions even in the case of lack low frequency information. 
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