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Summary 

An alternative least-squares algorithm for simultaneous estimation of the seismic source wavelet and 
reflectivity, i.e., blind deconvolution, requires a solution of the constrained optimization problem with 
constraints imposed on both reflectivity and wavelet.  Herein, a smoothness constraint on the wavelet in 
the form of a wavelet base function is proposed. The reason behind such a proposal is that the physical 
seismic wavelet can be presented as a bandlimited, smooth function. Numerical experiments show that 
wavelet smoothness constraints can improve the deconvolution robustness when dealing with data 
contaminated by noise. 

Introduction 

In seismic exploration, a short-duration seismic source wavelet (pulse) is transmitted from the surface, 
reflected from boundaries between subsurface earth layers, and detected by an array of sensors on the 
surface. With the assumption that this wavelet is not distorted during its propagation (perfectly elastic 
media), the recorded seismic trace x can be presented as a result of the convolution of the reflectivity 
sequence (e.g., layered earth model) with a source wavelet: 

                                                     𝒙 = 𝒘 ∗ 𝒓 + 𝑎𝑑𝑑𝑒𝑑 𝑛𝑜𝑖𝑠𝑒                                                      (1) 

where r refers to a time series of reflection coefficients and w refers to a source wavelet.  
The matrix presentation of equation 1 can be written as 

                                                         𝒙 = 𝑾 ∗ 𝒓 + 𝑎𝑑𝑑𝑒𝑑 𝑛𝑜𝑖𝑠𝑒                                                           (2) 

or                                                       𝒙 = 𝑹 ∗ 𝒘 + 𝑎𝑑𝑑𝑒𝑑 𝑛𝑜𝑖𝑠𝑒                                                          (3) 

where W and R represent convolution matrices for wavelet and reflectivity. Conveniently, equation 2 can 
be used to estimate reflectivity with a fixed wavelet, and equation 3 to estimate the wavelet with fixed 
reflectivity. Because the source wavelet is frequency band-limited, the convolution procedure destroys 
low and high frequencies outside the wavelet bandwidth. This effect causes sharp thin layered structures 
to be smeared in the receiving traces. Removing the effect of the source wavelet’s impact on the seismic 
traces is of great significance in detecting thin structures.  

The deconvolution process of recovering reflectivity from the observed trace x, without knowledge of 
both reflectivity and wavelet, is known as a blind deconvolution. This type of inverse problem has various 
applications such as: communications (equalization or channel estimation), nondestructive testing, 
geophysics, image processing, medical imaging, and remote sensing; therefore, seeking a robust 
algorithm becomes a subject of much research. 

Utilizing the property of cross relationships among multichannel records, equation 1 can be transformed 
into a homogenous matrix equation with respect to the reflectivity sequences. Solving r involves finding 
an eigenvector located in null space of the cross-relation matrix. To limit non-uniqueness, a sparseness 
constraint is employed (Šroubek and Milanfar, 2012; Yu et al., 2012; Kazemi and Sacchi, 2015). The 
convenient feature of this homogeneous equation is that only the reflectivity is involved and, therefore, 
the blind deconvolution can be divided into two steps. First, estimate reflectivity and then estimate the 
wavelet using equation 3. However, the cross-relation matrix is not one rank deficient, which can lead to 
minimization and can be easily trapped into a local minimum due to more than one eigenvector in the null 
space. The non-uniqueness makes this approach strongly dependent on the quality of the initial guess of 
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the true reflectivity. Moreover, due to the ambiguous amplitude of the reflectivity estimate from the 
homogeneous equation (scale uncertainty), the whole data set must be involved at the same time. This 
leads to a very large equation system that becomes computationally infeasible. Therefore, applying this 
approach may not be practical.  

A more acceptable method of solving blind deconvolution is to split the optimization of equation 1 into 
two sub-optimizations of equations 2 and 3 and solve them alternatively (Repetti et al., 2015; Šroubek 
and Milanfar, 2012, Krishnan et al., 2011).  Even if the convergence of this approach has not been 
deeply investigated, they appear to be quite efficient in practice.  

At publication, many authors also provided their algorithms; this gave us an opportunity to test and 
compare different methods. The results of our tests show that these algorithms are very sensitive to the 
signal-to-noise ratio, i.e., satisfactory results can only be obtained when the ratio is very high. An 
interesting fact is that the failed tests always end up with a non-smooth wavelet estimate. The reason, we 
believe, is that all the published approaches focus mostly on obtaining sparse solutions to equation 1 
and paid less attention to the wavelet estimate in equation 2. Moreover, the sparseness constraint to 
reflectivity is also applied to the wavelet estimate, e.g., Krishnan et al. (2011). The blind deconvolution is 
an ill-posed problem and any reasonable a priori information is of great value. Because we know that the 
seismic wavelet is a bandlimited smooth function, we should incorporate it into the deconvolution 
procedure.   

It is our understanding that the smoothness constraint to the wavelet (blur function) has not been well-
addressed in blind deconvolution. Wang et al. (2016) proposed an approach that uses equation 2 to 
estimate the wavelet where the convolution matrix is set as a Toeplitz matrix. However, when solving the 
equation, the Toeplitz matrix is expanded to the vector that represents the wavelet and, therefore, Wang 
et al. (2016) actually ended up with the same equation as equation 3. Because the wavelet length is now 
equal to the length of the reflectivity, the corresponding matrix R becomes very large, making 
computation inefficient. Considering that the effective length of the wavelet is small, the fused least-
absolute shrinkage and selection operator (LASSO) regularization (Tibshirani and Saunders, 2005) was 
employed to expect a smooth wavelet estimate. However, fused LASSO regularization is designed to 
control sparsity with continuity instead of smooth regularization and, therefore, the fused LASSO 
regularization may not be optimal for wavelet estimation. Bhuiyan et al. (2013) used damped least-
squares method to solve equation 3, but simple damped least squares may not necessarily produce a 
desired smooth output and, instead, a differential regularization operator is often used in geophysical 
inversion (Lizarralde and Swift, 1999, Reichel and Ye, 2009).   

Here, we apply an alternative optimization for seismic blind deconvolution. In addition to the sparseness 
constraint to the reflectivity estimation, we apply a wavelet base function as a smoothness constraint on 
the wavelet update. Numerical experiments show that the smoothness constraint can improve the 
deconvolution robustness of the noise-contaminated data and, therefore, can be an important tool for 
practical applications. 

Method description 

Blind deconvolution can be formulated as solving an optimization problem: 

                                    min𝑟,𝑤 ||𝑥 − 𝑟 ∗ 𝑤||2 + 𝜆𝝋(𝑟) + 𝛽𝝍(𝑤),                                     

where the first term is the likelihood that takes into account equation 1; the second and third terms are 
the regularizations for reflectivity and wavelet, respectively; λ and β are the parameters that control the 
strength of constraint regularization functions, 𝝋 and 𝝍. A formula such as equation 3 is nonconvex and 
the standard approach to optimization of this problem is to split the equation into two sub-optimization 
equations and alternating minimization of the squared Euclidean distance expressed by the Frobenius 
norm regarding r and w that are subject to constraint. 

 

Update reflectivity 

The reflectivity is obtained by minimizing the objection function: 
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                                           min𝑟 ||𝑥 − 𝑊𝑟||2 + 𝜆||𝑟||1.                                             (4) 

We investigated available algorithms and came to the conclusion that, when W is well defined, e.g., the 
wavelet is known and the signal-to-noise ratio is high, all the algorithms perform very well in 
reconstructing a reflectivity series; otherwise, the re-weighted algorithm performs better than others. 
When W is poorly defined, the LASSO algorithm (Tibshirani, 1996) can perform relatively better. Based 
on this observation, we choose an adaptive LASSO algorithm (Zou, 2006) to update the reflectivity. 

Update wavelet 

The wavelet is updated by minimizing the objection function: 

                                      min𝑣 ||𝑥 − 𝑅𝝓𝑣||2 + 𝜆||𝑣||
1
,                                                          (5) 

where 𝝓, a base function that consists of rotated Ricker wavelets with different phase, and v is a vector 

that makes wavelet estimation equal to 𝑤 = 𝝓𝑣. 

The same regularization form can be found in literature, e.g., using B-spline base (Yu et al., 2012).  Our 
choice of phase-rotated Ricker wavelets is based on the observation that, in real seismic data, the 
wavelet is usually close to this type of function. 

The process of alternative minimization of the described objection functions, i.e., equations 4 and 5, is 
repeated iteratively until desired convergence of the reflectivity and wavelet solutions is achieved.  

Examples 

The first example shows the comparison of source wavelet estimation with the damped least-squares 
method and wavelet base function regularization. The data are generated by convolving a random series 
of spikes with a 40° Ricker wavelet. Random noise was added to contaminate the model data. Equation 
3 is used to estimate a wavelet with known reflectivity. The results show that estimation with wavelet 
base function regularization produces a noticeably smoother wavelet.                              

       

                                                     

 

Figure 1. From top left to bottom right: reflectivity model; source wavelet; synthetic data with noise; wavelet estimated from first-order differential 
operator regularization, and wavelet base regularization. 

The second example shows a ‘wedge’ reflectivity model that consists of 15 traces with layer thicknesses 
in time varying from 1 ms to 15 ms. The data are generated by convolving the model with a 60° rotated 
Ricker wavelet. White noise is added to the model with a ratio to signal of 10%. The result in Figure 2 
shows that both the model reflectivity and source wavelet are well estimated. 
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          Figure 2. From top left to bottom right: reflectivity model, source wavelet, noised data, estimated reflectivity, initial wavelet for 
deconvolution, and estimated model and wavelet. 

Conclusions 

We applied the smoothness constraint on wavelet estimation in blind deconvolution; this constraint 
reflects the natural property of the source wavelet and, therefore, using it as a priori information is 
physically meaningful. Numerical tests show that the smoothness constraint on the wavelet improves the 
result of deconvolution of noisy data, which can make application of the proposed deconvolution 
approach particularly useful for real data.  
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