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Summary  

Five-Dimensional interpolation has become a very popular method to pre-condition data for migration. 
Many different implementations have been developed in the last decade, most of them sharing a similar 
dataflow and principles. In this abstract, I explore three different ways to implement the mapping between 
data and model in the context of Fourier transforms. These three methods are multidimensional Fast 
Fourier transform, Discrete Fourier Transforms, and Non-Equidistant Fast Fourier transforms. I 
incorporate the three operators inside the same inversion algorithm, to be able to perform a fair 
comparison between them.  

Introduction 

Most implementations for 5D interpolation work by calculating a transform by inversion with sparseness 
constraint and using this transform to map back to a new seismic geometry (Liu and Sacchi 2004). 
Applying the sparseness to the transform has an effect of filtering out sampling artifacts, because these 
are, by the definition of the transform, non-sparse. Looking from this high level of generality, all these 
different implementations are very similar. This similarity extends also to other dataflow details like 
overlapping five dimensional windows. Usually some version of either a conjugate gradient inversion or 
an anti-leakage inversion are applied to enforce the sparseness constraint. So, what do all these 
implementations differ on? The most common difference among them is on the transformation to connect 
data and models, in other words, how they represent the data and which basis functions are utilized. 
Some implementations use Fourier transforms, some use Hankel transforms, others curvelets, frames, 
Radon, Prediction Filters (Fxy) and Green functions based on modeling/migration operators. 

Many implementations used in the industry are based on Fourier transforms because they are very efficient 
and very good in representing small details of the data. One factor that strongly influences the efficiency 
and flexibility of all these transforms is whether they use exact input spatial locations or some 
approximation achieved by multi-dimensional binning, either direct or with some intermediate interpolation. 
When using exact locations, these transformations become computationally expensive to invert. When 
using binning these transformations are efficient and can handle large window sizes and gaps, but lose 
precision and flexibility to adapt to narrow azimuths and long offsets. When binning 5D data from standard 
geometries, the resulting grids turn to be very sparse. What is interesting about Fourier transforms is that 
they seem to adapt well for either approach. The subject of this paper is to explore how Fourier 
interpolation performs in one or the other case. I compare a five-dimensional interpolation with three 
different operators applying the three approaches mentioned above, binning, exact locations, and 
approximated with intermediate approximations. Special care is taken of using the same inversion and 
dataflow for the three cases, leaving differences strictly confined to the differences in operators.  

Operator Implementation 

The three more common choices for Fourier transformations are: 

• Fast Fourier transform (FFT) with multidimensional binning and grid adaptation. 

• Discrete Fourier transform (DFT) using exact spatial locations 

• Non-Equidistant Fast Fourier transform (NFFT) using interpolation plus FFT. 

Fast Fourier transform operator 
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A multidimensional FFT can be applied on each frequency slice but binning is required because FFT 
algorithms assume data are regularly sampled. This binning is not trivial for several reasons as explained in 
Trad (2009, 2014). A complete 5D grid implies a data set acquired with line interval equal to group interval, 
which is much denser than is usually done in practice. A typical 3D survey will fill only a small percentage, 
typically close to 3%, leaving for the algorithm to infill 97 % of the remainder cells. 

Binning along inline crossline directions is relatively straightforward, being a sensible choice the bin size, 
which is usually calculated to match the Fresnel zone size after migration. On the other hand, binning along 
offset and azimuth, or inline crossline offsets can be quite complicated, depending on the fold of the data, 
the shot patch pattern and the offset range. Optimal binning is critical for the FFT because coarse binning 
introduces time jitering that affects sparseness in the Fourier space, and creates a problem with traces that 
fall into the same bins. Fine binning makes the model size large and difficult to solve. For example, 
reducing binning by half in each direction forces interpolation to infill 24=16 times as many grid cells.  

An industrial application of this algorithm has to adjust the binning size along offset and azimuth to deal 
with these issues. For example, in this work the user pre-defines the percentage of alive traces required, 
usually 3% for wide azimuth data or 5% for narrow azimuth data. With this information, the algorithm 
calculates the optimal size of the offset/azimuth binning intervals to achieve this target. More sophisticated 
schemes are possible, but this simple scheme helps to adjust the grid as the data fold changes on different 
areas of the survey. Another problem with binning is how to adjust the aperture across dimensions such 
that there are no extrapolated traces, but instead new traces are created only inside the region of support 
of the acquisition. For example, the azimuth range can be made automatic, depending of the actual 
coverage and the minimum/maximum offsets along inline/crossline directions can adjust to the patch size in 
the data. 

Discrete Fourier transform 

The simplest way to calculate the Fourier transform of irregular data is to use the mathematical definition, 
which for 4 spatial dimensions is: 

 

In this equation ui is the value of the sample at position xi and Uk is the value of the DFT at wavenumber 
kj. For 5D interpolation these are all four-dimensional vectors. Because the k axis is usually made 

regular, the kj value is replaced by an index j times a ∆k interval. Equation 1 contains one nested 
summation for each dimension, which makes this formulation very slow for 5D. Therefore, although 
precise and straightforward, the DFT method may not necessarily be the best choice for wide azimuth 
data. To speed up this algorithm we can reduce the operator to calculate only the wavenumbers inside 
the FK volume with physical significance, with minimum/maximum wavenumbers variable with temporal 

frequency. Many details are required to make this formulation practical: pre-calculate the operator or 
use sin-cos tables, careful alignment of memory allocations, loop vectorization, and multi-threading. 
Parameterization for this approach is analogous to the case of binning. Although in principle there are 
no sampling intervals, in practice we need them to calculate the Nyquist frequencies on each spatial 
dimension. The algorithm has flexibility to adjust to variable spatial ranges, making possible to adjust for 
example for streamer acquisitions where the azimuth range changes continuously with offsets.  
Non-Equidistant Fast Fourier transform 
A more efficient approach than the DFT for calculating the Fourier spectrum of irregular sampled data is 
to use some intermediate, fast, and localized interpolation to move the traces to the bin centers in the 
4D spatial grid, and then apply a multi-dimensional FFT. We can think of the binning + FFT method 
described first as a nearest neighbor pre-interpolation and the NFFT as a higher order pre-interpolation. 
In this work, I have used the method called Non-equidistant Fast Fourier transform (NFFT, Duijndam 
and Schonewille, 1999), and the libraries from the Technical University of Chemnitz (Keiner et al., 
2009). The irregular data are (irregularly) convolved with a smoothing window to relocate samples onto 
a regular grid. A multidimensional FFT is applied to map the resulting regular (bandpass filtered) signal 
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to the Fourier domain. The effect of the window is removed by deconvolution, which can be done in the 
Fourier domain since all samples are now in regular locations.  One issue is that the library has some 
constraints for the window parameterization: it requires polynomials with an even number of 
parameters, and a minimum oversampling factor for these windows. This requires careful calculation of 
padding factors, and research is still ongoing to obtain a general an optimal parameterization.  

Examples 

Figure 1 shows a test for regularization where the input traces are located at irregular intervals, and the 
input traces are decimated four times. There is no normal moveout correction (NMO) applied, to illustrate 
the behavior for curved events. We see that the three operators succeed in regularizing the data and 
binning errors are not visible but there are some subtle differences in the spectral content for the most 
curved parts of the events, with the best results for the DFT. For this small example (2D data, 3D 
interpolation) the differences in running time are negligible. In this example, I used shot/receiver 
coordinates as spatial dimensions, which is feasible in some cases like 2D. In 3D geometries, usually 
acquisition coordinates are too far apart and commonly we use midpoints x/y, and either offset xy or 
offset azimuths, as in the following example. 

For sparse 3D data, we have to use large interpolation windows to be able to deal with large minimum 
offsets. In Figure 2 we see a comparison for a real data set from Brooks, Alberta (CO2 sequestration 
project). In Figures 2a and 2b we see the test window in the midpoint domain (red square) and the shots 
and receivers contributing to it. The original geometry was orthogonal, with 100 meters line spacing and 10 
meter group spacing (5x5 bin size), but I eliminated from the input every second receiver line, making now 
the spacing 200m (or 40 bins). I set the output geometry to 100 meter line interval to recover the missing 
receiver lines. To allow each window to cover a full box I set the window size to 40 inlines × 40 crosslines. 
For the other dimensions, I use 20 offsets and 8 azimuths, with intervals of 50 meters and 45 degrees. 
Actually, these intervals are too large for the binning approach, but the implementation automatically 
handles this issue creating an interpolation grid of 25 meters and 22.4 degrees respectively. 

Figure 2c shows a portion of the original data with all traces belonging to a removed receiver line (none of 
these traces where in the input). Figure 2d shows the corresponding traces created by using the FFT 
algorithm. We can identify the same reflectors in both, although the FFT result is a bit cleaner as expected. 
Figure 2e contains the traces created by the DFT algorithm. The main difference with the FFT result is 
stronger filtering, because of the slower convergence of the algorithm with DFT (all tests used 30 
iterations). Also, because of the high memory requirement of the DFT operator the DFT Nyquist 
frequencies were somewhat reduced, which can explain some of the additional filtering. Figure 2f shows 
the result for the NFFT algorithm. There is some low frequency energy that does not exist in the original 
traces, which may be explained by insufficient numerical regularization at low frequencies. The 
computational time for the FFT approach was only 8 minutes, the DFT approach took 3 hours, the NFFT 
approach took 50 minutes. For this second test the best results have come from the FFT approach, but 
that is influenced by the large window size, and the simple structure of the data tests.  

Conclusions 
In this paper, we saw how three different Fourier operators behave during 5D interpolation. The first 
operator, standard multidimensional FFT with binning, seems to work well if binning is carefully 
implemented. DFT operator is more precise and flexible but computationally very expensive. This 
operator is a good benchmark tool to understand how approximations to exact locations affect the other 
operators. NFFT operator is a compromise in terms of speed of flexibility. When very large windows are 
required, like in the case of sparse orthogonal geometries, the efficiency and performance of the FFT 
operator is superior to the other two, but in the presence of complex structures or long offsets strong 
curvature in the events may require use of the DFT or NFFT approach.  
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Fig 1: Regularization in 
shot/receiver coordinates from 
irregular decimated data:  

a) original without decimation 

b) input c) DFT, d) FFT e) NFFT 

Fig 2: Interpolation of receiver lines in inline/crossline/offset/azimuth coordinates. Red square is 
one window in inline/crossline.  a) input geometry contributing to the red window, b) output 
geometry, c) one missing receiver line (not in input). d) estimated from FFT, e) DFT, f) NFFT  
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