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Summary  

Least squares migration has been an important research topic in the academia for about two decades, 
but only recently it has attracted interest from the industry. The main reason is that from a practical point 
of view its ratio of benefit/cost has not been sufficient for its use in seismic exploration. Another problem 
is that these benefits are mixed with effects from the filtering techniques used to regularize the inversion, 
which are computationally much cheaper. In this paper, I discuss some challenges with least squares 
Kirchhoff depth migration. This algorithm, although less precise than the more popular least squares 
reverse time migration, has the advantage of being fast enough to be applied in a production 
environment, and flexible enough to be applied without data regularization. This last characteristic makes 
it a good candidate to understand benefits in terms of footprint acquisition and aliasing. In addition, its 
limitations in terms of modelling/imaging accuracy make more evident some problems that exist but are 
often ignored when using reverse time migration with synthetic data.  

Introduction 

Despite the existence of more accurate imaging algorithms, the most common migration algorithm for 
land seismic data is still Kirchhoff migration, mostly because of its flexibility to adapt to irregular sampling 
and its efficiency. Kirchhoff migration is basically a weighted mapping between data space (the original 
acquired data), and the image space (migrated section), where samples are weighted and shifted 
temporally and spatially. These weights come from the mathematics of integration and wave propagation, 
usually assuming infinite aperture, and taking only partially into account the exact locations of shots and 
receivers. Hard work over many decades has led to weights that produce a good approximation to true 
amplitude reflectivity. However, these weights have limitations because they do not contain information 
about the sampling operator and acquisition illumination. 

Least squares migration (LSMIG) is a different approach to migration where, rather than mapping and 
weighting to find the model, a modeling operator is inverted by optimization algorithms (Nemeth et al., 
1999; Kuhl and Sacchi, 2003). The inverse of this operator applied to seismic data produces an image 
that by design can predict the acquired data in a least squares sense. Although the inverse of this 
modeling operator is closely related to the imaging (mapping) operator, it represents a different approach 
to the problem and it takes into account the actual geometry (sampling and aperture) of the data. By 
inverting a modeling operator that contains the acquisition pattern, we can in principle remove acquisition 
and illumination effects.  

Probably the most attractive characteristic of least squares migration is that it falls into a wide range of 
algorithmic techniques used not only in seismic but in physics in general. The mathematics and physics 
of LSMIG allows one to include concepts like prior information, in the form of mathematical constraints 
that help to obtain better images. In practice, however, LSMIG is a difficult process because of the high 
cost of applying the modeling/adjoint operator multiple times, and the challenging goal of creating an 
image that not only looks reasonable but also can predict the data. Although stacking samples (mapping) 
is a very robust process, inverting a multidimensional operator is usually an ill-conditioned problem. 

From the practical point of view the advantages of LSMIG have not been shown in the industry except for 
specific examples, mostly 2D synthetic examples. Its application to 3D seismic processing is only starting 
to be attempted as an alternative to traditional methods and it remains as an elusive application of 
academic research. This is particularly true for land data sets, where noise is complex and correct signal 
amplitudes are very difficult to predict correctly. However, many possible advantages over conventional 
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migration keep motivating researchers to solve these difficulties. Among these possibilities, we can 
mention (1) elimination of footprint noise caused by poor sampling and (2) better amplitudes in the image 
by compensation of illumination problems. In addition, the availability of the LSMIG engine provides a 
powerful and physical tool for interpolation, and de-noising (Trad, 2015). 

Theory 

The LSMIG implementation in this work uses a general philosophy widely used to solve for geophysical 
problems that originates from the Stanford Exploration Project and is nicely explained in Claerbout (1992). 
Given a transformation of some model m to some data d through some mathematical operator L, 

d = Lm.       (1) 

we can approximately solve the inverse problem of recovering the model that produced the data by 
inverting the operator in a least squares sense. The meaning of the different components of equation (1) 
depends on the details of the operator and are often associated with well-known transformations. For the 
case of LSMIG, L is a synthesis or modeling operator, that generates data from reflectivity using Green 
functions as basis functions. Any transformation could be used to generate the same data by this 
procedure, independently of whether it is physical or not. What is different and requires some consideration 
is the meaning we assign to the model. Even for very similar operators, small variations can change what 
the model represents. For example, by changing the weights in the operator we can switch the model from 
reflectivity (Kirchhoff) to velocity perturbations (Born). 

Once a meaningful operator is chosen, we can estimate the model by inverting the operator. To invert 
operators, we define a cost or objective function, which is a mathematical expression that measures the 
undesired characteristics of the model. The most common is to find a model that honors the data in a least 
error sense, measured on some norm, and has a minimum of information not required by the data. This 
statement of goals is commonly presented as 

minimize ||Wmm||pp 

subject to ||Wd(d − Lm)||= φd      (2) 

where φd is some estimate of the noise level in the data plus a residual due to the failure of the proposed 
model to explain the data. p and q indicate that different norms can be applied to measure the norm of 
vectors. Wd could be a matrix or vector of data weights, often a diagonal matrix containing the inverse of the 
standard deviation of the data, but more generally it could be any kind of filter that leaves out bad data. Wm 

is an operator of model weights that can be customized to enhance our preferences regarding the model. 
For example, Wm might be a gradient (roughening) operator, then minimizing ||Wmm|| will produce a smooth 
model. After absorving Wd and Wm  into L by a change of variables (Trad et al., 2003), the solution to this 
problem results on the usual LS formulation:  

 m=(LHL)-1LHd        (3) 

were the (LHL) operator, known as the Hessian, is iteratively deconvolved from the migration result (LHd). 
For LSMIG we usually need to favor, but not enforce, smooth models that lead to continuous structures. A 
typical choice for Kirchhoff type of migrations, is to use Wm to enforce smooth changes of reflectivity with 
offset or angle. This can be done as in Nemeth et al. (1999) by taking differences between consecutive 
reflectivities at different offsets, as in Kuhl and Sacchi (2003) by a sparse tau p transform of the reflectivity, 
or as in Moghaddam and Herrmann (2005) by a sparse curvelet transform of the reflectivity. A generic 
choice for Wm is the inverse of a multidimensional operator that takes a multioffset migrated volume and 
performs smoothing, for example a triangular filter, a dip filter, a fxy filter or a Radon transform. In Fomel 
(2007), this formulation is generalized with the name of shaping filter.  

Weighting 

It is not trivial to achieve the optimal weighting scheme for LS Kirchhoff migration. A common approach is 
to use standard migration weights with a migration operator, design its adjoint such that it passes the 
adjoint test (Claerbout, 1992), and use these two operators into a CG algorithm. Weights in migration 
algorithms often take the form of deconvolution (DC) weights, which come from the imaging principle 
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(Claerbout, 1971) as a ratio of scattered (us) over incident (ui) wavefields. This leads to migration weights 
that are proportional to a ratio of shot and receiver wavefield amplitudes, or, after approximating for 
constant velocity, to a ratio of traveltime inverses.  (Dellinger et al., 1999; Zhang et al., 2000). On the 
other hand, Nemeth et al. (1999) sets the operator L as a modelling rather than a migration (Casasanta, 
personal communication). This approach changes the imaging condition from deconvolution (migration) 
to cross-correlation (modelling). In the cross-correlation imaging condition (XC) the LS weights are 
proportional to the product of amplitudes, which leads, after using similar approximations, to a product of 
traveltimes instead of a ratio. Testing with simple flat synthetics supports this interpretation. Figure 1a-b 
illustrates that deconvolution weights produce the correct amplitudes for migration (a), but as we iterate 
during the inversion, the amplitudes get distorted (b). Figure 1c-d show that cross-correlation weights 
produce the wrong image for migration (c), but the amplitudes become correct after a few iterations (d). 

Another related issue is whether the phase filter operator should be included inside the modelling -
migration operator so it would act for every iteration, or should be only pre-applied as a data 
preconditioner, or not applied at all. The exact formulation for the phase shift operator depends on the 
dimensionality of the data acquisition, being equal to iω for 3D, √i|ω| for 2.5D or |ω| for 2D (equations 2 
in Bleistein and Gray (2001)). In this paper, I refer to this filter simply as ω filter. Figure 2 compares the 
amplitude spectra. These tests show that if the ω filter is not included inside the operator, then the 
spectrum of the image shift towards higher frequencies with iterations. Another factor to consider with 
data weights is whether to include or not velocity weights. In theory amplitude weights contain a power of 
velocity (v−2 for 2D, v−3 for 3D). Although in migration this factor can be replaced by a depth gain after 
migration, in LSMIG it has a different effect because by including the velocities inside the weights the 
convergence is focused to areas with higher velocity. This is one of many situations where simplifications 
taken in migration do not carry over to LSMIG. 

Noise control 

One of the most important problems in LSMIG is the accumulation of noise with iterations. This noise 
comes from broken contributions to the model as the algorithm tries to predict small details on the data 
that are not properly mapped by the migration operator, in other words, when the operator does not 
approximate the physics correctly. For example, this effect is accentuated with discontinuities or gaps in 
Kirchhoff depth migration traveltime tables, which make the operator a poor representation of the 
physics. Conversely, this noise disappears if the data are created by the same numerical approximation 
used in the migration engine. For this reason, LSMIG noise is more obvious with a Kirchhoff migration 
than with reverse time migration (RTM). However, RTM may not show this problem if tested with finite 
difference data, but the noise may appear in real data processing as the numerical approximation deviate 
from the actual physics that produced the data. 

As usual in ill-conditioned inversions, this problem requires some form of noise control by means of 
numerical regularization. Regularization in this work is performed by a multidimensional triangular filter 
(the Wm operator in equations 2). The filter acts on the inline, crossline and offset dimensions. The length 
of the filter, which is independent across dimensions, permits one to control the noise effectively, but it is 
limited by the structural complexity of the image. In Figure 3a we see one iteration of LSMIG (equivalent 
to migration) for the Marmousi data set, Figure 3b we see the same result after 10 iterations when no 
noise control is applied, and Figure 3c shows the same with a triangle filter along crosslines (cdps) and 
offsets. The length of the filter was very mild to preserve structure (length along inline was 5, length 
along offset was 5). Increasing the length would make the result cleaner, but some faults would be 
smoothed. We need to emphasize that improvements in the image we seek should not be a pure 
consequence of the regularization filter but of the inversion of the Hessian operator LHL.  

Convergence 

A critical aspect for a successful application of LSMIG in an industrial setting is to improve its 
convergence.  One factor that has a large effect on convergence is the dimensionality of the model. 
When the model is defined in terms of offset gathers instead of their summation, convergence improves 
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dramatically. This is understandable because of less mixing, which makes prediction easier, and 
therefore convergence faster. Using offset gathers has the effect of subdividing the problem into smaller 
sub-inversions. Similarly, convergence for a part of the data is much faster than for the whole data. The 
trade-off, however, is that by using part of the data inversion is only partially accomplished, even if data 
fitting is better.  

Conclusions 

Although straightforward in principle, there are many options related to the operator design whose choice 
can have significant influence in results and efficiency, and are not obvious from the theoretical point of 
view. In particular it is important to understand the operator weights in terms of phase and amplitude as well 
as regularization operators to control the noise during iterations.  
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Figure 1: Top DC weights, a) migration, b) LSMIG, 
bottom XC weights, c) migration d) LSMIG  

Figure 2: Effect of phase filter. Top DC weights, a) 
pre-applied b) inside operator,  bottom XC weights, 
c) pre-applied d) inside operator  

Figure 2: Noise with iterations. a) 1 iteration b) 9 iterations without noise control c) 9 iterations with 
filter inside operator.  
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