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Summary 

The induced seismicity event localization using inverse kinematic algorithms is still a problem requiring special 

attention.  Often a catalog of events detected  and located using limited on-surface  instrumentation  lacks the 

precision of origin depth. Such errors can hinder the interpretation of activated zones using seismicity as a proxy. 

The location constraints are affected by the inaccuracy of the velocity model, limited acquisition geometry and the 

assumptions inherited by the location algorithm, among other factors. The issue becomes even more aggravated 

when only surface arrays are employed, where the geometry strongly favors the accuracy of epicentral location as 

opposed to depth location. The reported depth errors are sometimes comparable to a formation thickness or even 

the origin depth itself. The passive seismicity is often located using the P and S first breaks only. Finding additional 

features of the seismic signal that could be informative of its origin can be a first step towards constraining the 

depth uncertainty. 

Therefore, the purpose of this study was two-fold. First, we characterized the uncertainty in the event origin due 

to the inaccuracy in the effective velocity model using Monte-Carlo simulations. We show that a low velocity zone 

(LVZ) can cause the non-uniqueness  and a spread of the solution over a depth range. Subsequently,  seismo- 

grams from a set of synthetic earthquakes were simulated spanning the depth range of 2-5 km, covering LVZ. By 

varying the focal mechanism and event origin, we numerically generate a bank of waveforms corresponding to 

the events with known locations. A set of classifiers is trained on the bank to predict the event location with re- 

spect to LVZ based on arrival times and statistical features of the signal waveforms. We demonstrate that adding 

several features of the signal, descriptive of its origin can improve the location depth constraint, as opposed to 

using arrival times only as predictor variables. 

Introduction 

The earthquake localization on a regional scale using inverse kinematic algorithms is still a problem requiring 

special attention. The on-surface seismic networks for monitoring induced seismicity provide a sufficient location 

accuracy for the earthquake hypocenter,  but often offer very limited resolution in depth (Eisner et al. [2009]). 

For computational convenience and due to the lack of information, the velocity model used for location is often 

parametrized as a function of depth only. In some cases such an approximation is a very strong assumption, and 

it is important to consider several different possible 1D structures to test the sensitivity of the location to errors 

in the velocity model. The sparsely distributed on-surface instrumentation  and insufficient azimuthal or vertical 

coverage can aggravate the location uncertainty due to the limited direction of the ray-paths it is able to receive 

(Eisner et al. [2010]). As a result, in the absence of downhole observations, the reported uncertainty of the depth 

location using on-surface array only may be comparable to the origin depth value itself, such that the location 

of the event becomes untrustworthy to the analyst. On the other hand, in the daily industry practice the event 

origins are often derived based on the deterministic methods that use only 2 characteristic points (P- and S-wave 

arrivals) per sensor per event. The information transmitted by the event is obviously not limited to two-points only, 

and therefore should not be discarded when the location is performed. Improving event location can be done 

through finding informative features of the seismic signal that could help better constrain the location. 

We start with a rigorous study of the effect of the uncertainty in the velocity model on the P- and S-wave travel 

time error. The ray-tracing method is employed to predict the time of the arrivals for the two phases at station 

location. The Monte-Carlo simulation is then performed with varying velocity model to estimate the mean and 
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standard deviation of the arrival time. These values are consequently  used as a proxy for an event’s P- and 

S-wave arrival time uncertainties. Using non-linear location methods (Lomax et al. [2001]), the arrival times from 

the Monte-Carlo simulations can be translated into spatial uncertainties and thus give an error estimate due to 

uncertainty in the velocity model, given an event location. 

Subsequently, we simulate the synthetic seismograms from the virtual sources spanning the depth range of 2-5 

km. A set of characteristic functions is applied to the resultant traces in order to extract features describing the 

origin. Later, a classification  of the event location is carried out on two separate feature sets: (i) arrival times 

only and (ii) arrival times bundled with the signal features. With this comparison we highlight that the travel time 

data may be insufficient to constrain the origin of the event due to the velocity model accuracy while adding the 

waveform features has a potential to constrain the origin depth. 

Methods 

Generalized workflow 

This report is particularly focused on estimating the depth error due to the ve- 

locity model uncertainty. That is, we want to evaluate the jitter in the hypocen- 

ter location due to inaccuracy in the approximation of the true velocity model 

as a 1D layered cake model derived from Vp and Vs logs. Specifically,  we 

would like to simulate the travel times from many virtual events with a fixed 

origin but variable velocity model. These travel times are then used for re- 

locating the events, that should potentially result in a cloud centered at the 

origin. The spatial dimensions and the shape of the cloud can give a quan- 

titative insight into how sufficient the 1D velocity model assumption  might 

be for a particular region and acquisition geometry. Therefore, the general 

workflow can be summarized in several key steps as follows: (i) determine 

the background (expected) velocity model from the sonic logs, (ii) carry out 

Monte-Carlo (MC) simulations for the travel time sets in a perturbed velocity 

model for an event with a fixed origin, (iii) locate the event corresponding to 

the set using background velocity model, and (iv) analyze the PDF of the 

obtained distribution. 

Monte - Carlo travel time simulations 

As no anisotropy or 2D elastic profile information was available, the baseline 

velocity model was approximated  as a 1D laterally homogeneous  layered 

Figure 1. An example of the distribution of 

velocity profile used in the MC simulations. 

The color represents the values of PDF of the 

velocity distribution. Note the limited variation 

of the layer above LVZ due to the creation of 

the shadow zone. 

medium. The elastic parameters for the layers were derived from the sonic wellbore logs. The velocity uncertainty 

in this study is modeled through applying a random normal perturbation of Vp and Vs within a layer, while keeping 

the thickness of the layers constant. The standard deviation of the perturbation is a fraction of the velocity value 

within the layer. An example of the velocity profile distribution with the 6% standard deviation is shown in Figure 

1. In the case of a 1D layered medium the classic seismic ray theory can produce an exact solution at a very low 

computational cost. Therefore, a Python-based implementation  of a ray tracing method was chosen as a best 

fit-for-purpose method. 

Event origin location and synthetic waveform modeling 

In the case of a limited recording geometry and a velocity model with sharp horizontal interfaces, a probabilistic 

direct global-search procedure was shown to outperform the linearized location methods and adequately deter- 

mine the complete location PDF of the event, converging to a global maximum (Lomax et al. [2009]). Therefore, 

we opted for employing the probabilistic, non-linear, global-search earthquake location algorithm implemented in 

the NonLinLoc software Lomax et al. [2001]. 

The synthetic waveforms used for event origin classification were produced using the wavenumber integration 

method implemented  in CPS suite (Herrmann  [2013]). For the particular case of 1D media, CPS allows one 

to obtain the full waveforms much quicker than FD methods commonly used for similar purposes. For each of 

the source-receiver pairs simulated in the model we generate a database of Green’s functions. The Green’s 

functions are then convolved with the source wavelet of the given dominant frequency f = 2.5 Hz and a given 

moment tensor Mi,j corresponding to a pure explosive source (identity matrix). To achieve variability in the signal 
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waveforms and mimic realistic amplitude uncertainty, the moment tensor was perturbed with a Gaussian noise: 
 

Mi,j = 1 + Ni,j (0, σm),  (1) 
 

where σm  = 0.1 is the standard deviation of the perturbation. Subsequently, a set of features is extracted from 

the waveforms in order to bring more information about the origin of the signal. Prior to the feature extraction, the 

signals are all normalized to a unit amplitude. We then obtained the envelope of the signal on the vertical channel 

using Hilbert transform and chose the following features as the proxy: 

 

 
 

Figure 2. An illustration of the signal classification concept. The signals originating from the locations on the grid (a) are then transformed into a feature 

space and labeled by the class containing the event origin. 

 

 
• kurtosis of the signal envelope - to show the peaked-ness of the signal and discern between signals with 

strong and weak multiple reflections, 
 

• mean value of the envelope, 
 

• standard deviation of the envelope - to show the variability in the envelope, 
 

• area under the envelope, 
 

• the ratio of the signal energy contained between tp and ts with respect to the whole trace 
 

• number of zero-crossings of the envelope derivative - to count the number of local extrema of the envelope 

 
The procedure of modeling and feature extraction is then repeated over the set of values for the moment tensor 

Mi,j and locations covering the range of 2000-5000 meters. 

Signal classification 

The concept of the classification is briefly illustrated in Figure 2. The zone of 

interest is first meshed into nodes that can host virtual sources. The signal 

from an event originating  at a node is transformed  into the feature space 

and is labeled according to the location of the grid. The signal database has 

been divided into 3 classes by the origin depth of the event: (i) above LVZ, 

(ii) within LVZ, and (iii) below LVZ. The positions were marked according to 

their relative location with respect to the LVZ as demonstrated  in Figure 3. 

For each position of the virtual source 150 simulations with different values 

of Mi,j were carried out. The database was later split into the training (70% of 

the total data) and the test datasets (30% of the total). A set of classification 

algorithms was trained on the training data in order to predict the focal depth 

of the event (its class) given a set of features of an event of interest from the 

test data. Therefore, a comparison of prediction accuracy was done between 

 
Figure 3. The relative virtual source-receiver 

locations for the classification experiment. 

The colorscale indicates which class an event 

belongs to. 

a non-generalizing algorithm - K-nearest-neighbors  (KNN,Cover and Hart [1967]), and linear classifiers - logistic 

regression  (Jr and Lemeshow  [2004]) and Support Vector Classifier (SVC) with a linear kernel (Guyon et al. 

[1993]). The regularization for the logistic regression and SVC, and the number of neighbors for KNN were tuned 

through exhaustive grid search over hyperparameter space using 5-fold cross-validation. 

Our interpretation here is limited to the analysis of the confusion matrix. The element of the confusion matrix ci,j 

shows the number of observations from class i predicted into class j. 
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Results 

Origin uncertainty estimation 

The origin depth uncertainty was estimated for 6% velocity perturbation. For both simulations the true location of 

the event was set to (X, Y, Z ) = (4000, 6000, 3910). The location centroids of MC simulated events for the model 

are shown Figure 4. The X and Y coordinates of the event are centered at their true values, whereas the depth of 

the event shows a bi-modal distribution, with stronger mode centered 240 meters above the depth. The weaker 

mode, however tends to center around the true depth of the event. 

 

 
 

Figure 4. The results of the location of 6% velocity perturbation Monte-Carlo simulated virtual events describing the true event at 

(X, Y, Z ) = (4000, 6000, 3910). The receivers are shown in black triangles, the virtual event centroids - in blue circles. 

 
Signal origin classification results 

The classification has been carried out on the database of 90 

different earthquake origins distributed uniformly along the depth 

range of 2-5km  and covering  the area around  the central  Fox 

Creek seismicity cluster as shown in Figure 5. Here we limit our- 

selves to a three-class classification based on the proximity of the 

origin to the LVZ as indicated by the color of the event origin in 

Figure 3. The classification has been carried out for two feature 

sets: (A) the travel times for P- and S-phases at each station (a 

total of 8 features) and (B) the features from A bundled with the 

signal features extracted from the vertical channels as described 

in Methods section. The confusion matrices for the optimally set- 

up classifiers are shown in Figure 6. One may see that KNN being 
 
Figure 5. The distribution of induced seismicity in Fox Creek area for the events of winter 

2015. The central cluster modeled in this study is shown in cyan. 
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