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Summary 

Removing noise in seismic sections facilitates clearer interpretation by increasing the signal-to-noise ratio. 
Singular spectrum analysis (SSA) is one method for denoising seismic data. This method has been applied 
to single component data. Applying the algorithm to multicomponent geophones requires either repeating 
the algorithm for each component or to embed the multicomponent data into a special Hankel form. We 
present research that address the different ways in which one can embed multicomponent data in the SSA 
Hankel matrix. 

Introduction 

Originally, SSA utilized a trajectory (Hankel matrix) of time series in an eigen-spectra decomposition 
(Vautard and Ghil, 1989). The method is often applied to single component seismic data denoising 
(Oropeza and Sacchi, 2011). SSA has also been employed in geophysics for studying climatic records 
(Read, 1993; Plaut and Vautard, 1994, Hsieh and Wu, 2002; Ghil et al., 2002), filtering digital terrain models 
(Golyandina et al., 2007), and to estimate time series for signal reconstruction (Golyandina and Stepanov, 
2005). However, our focus is its application to seismic data enhancement. We concentrate our research 
into understanding ways of utilizing SSA for vector field data.  

Theory 

The SSA denoising method can be summarized by the following steps 

1. Perform Fourier Transform on data to bring it to the frequency domain. 

2. Form a Hankel matrix from spatial samples at one frequency. Samples are represented by 𝑆𝑖. A 

Hankel matrix is of the form 

𝑀 = [

𝑆1 𝑆2

𝑆2 𝑆3
⋯

𝑆𝐾

𝑆𝐾+1

⋮ ⋱ ⋮
𝑆𝐾 𝑆𝐾+1 ⋯ 𝑆𝑁

]    . 

3. Execute a Singular Value Decomposition (SVD) on the Hankel matrix to reduce its rank. 

4. Average along the anti-diagonals of the reduced-rank matrix to estimate the denoised spatial signal. 

5. After performing SSA on all frequencies, we inverse Fourier Transform the data. 

Method 

We investigate two primary methods for simultaneous denoising. The second method is separated into 
parts a and b. The methods involve modifying the Hankel matrix to embed two-component data. Otherwise, 

the same steps are followed as in SSA. The two components are represented by 𝑉𝑖 for the vertical 
component and 𝐻𝑖 for the horizontal component.  

 

Method 1, alternate the vertical and horizontal components along the anti-diagonals given by the following 
matrix 
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[
 
 
 
 

𝑉1 𝐻1

𝐻1 𝑉2

𝑉2 𝐻2

    
𝑉2 𝐻2

𝐻2 𝑉3

𝑉3 𝐻3

⋯
𝑉𝐾 𝐻𝐾

𝐻𝐾 𝑉𝐾+1

𝑉𝐾+1 𝐻𝐾+1

⋮ ⋱ ⋮
𝐻𝐿 𝑉𝐿+1    𝐻𝐿+1 𝑉𝐿+2 ⋯ 𝑉𝑁 𝐻𝑁 ]

 
 
 
 

    . 

 

Method 2a, vertical and horizontal Hankel matrices which are originally square and concatenated into one 
matrix given by 

 

 

Method 2b, vertical and horizontal Hankel matrices concatenated into a matrix that is close to square given 
by 

 

 

Examples 

We tested the new methods on synthetic and real examples of two-component seismic data. Figures 1-3 
show results of the synthetic example. Figure 1 replicates a seismic gather. The vertical component 
measures the P-wave and the horizontal component the S-wave. The denoised result for the methods are 
shown in Figures 2 and 3. Table 1 gives the time of each method and the corresponding Q factor given by 
the following equation: 

 

Where r is the noise free data and d is the denoised data. The brackets refer to the Frobenius norm. 

For all synthetic examples, we use a rank of 6 which is double the number of linear events. 
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Figure 1: Synthetic example for three events. (a) Vertical data without noise. (b) Horizontal data without 
noise. (c) Vertical data with randomly generated with Gaussian noise. (d) Horizontal data with added noise. 

 

Figure 2: New denoising methods performed on the vertical component.  Denoised data using methods 
(a) 1, (b) 2a, (c) 2b. Parts d to f represent the error between the denoised data and the original non-noisy 
data (figure 1 a) and b)). Error from methods 1, 2a, and 2b are shown in parts d), e), and f) respectively. 

 

Figure 3: Denoised horizontal component for methods (a) 1, (b) 2a, (c) 2b. 

 

Method Original SSA 1 2a 2b 

Vertical Q 1.0144 1.0118 0.7000 0.7528 

Horizontal Q 0.8544 0.8435 0.5236 0.5728 

Table 1: The Q value and processing time for each of the new methods. Q values are calculated separately 
for the vertical and horizontal components. There is negligible improvement with method 1 and a worsening 
with method 2. 



  

 

GeoConvention 2017 4 

The following field data example applies method 1 to a real data set. The data is from the Western 
Canadian Sedimentary Basin (WCSB) and is a near offset section. Figure 4 only shows the result from 
method 1 because the Q factor is the highest. Twelve eigenvalues were retained. 

 

Figure 4: Real data example from the WCSB. (a) Original vertical data with added noise. (b) Denoised 
vertical data using method 1. (c) Noisy horizontal data. (d) Denoised horizontal data. 

Conclusions 

We investigated different ways of denoising multicomponent seismic data simultaneously via Singular 
Spectrum Analysis. The first method involves alternating the vertical and horizontal components along the 
anti-diagonal of the Hankel matrix. The second method concatenates vertical and horizontal Hankel 
matrices. After calculating Q (our factor of quality), we found method 1 to be superior to method 2. 
However, method 1 is negligibly better than performing SSA on separate components. We applied method 
1 to a real data example from the WCSB with added noise. These new algorithms are viable alternatives 
for multicomponent data denoising. 
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